
Beginner's Python
Cheat Sheet - Pygame
What is Pygame?
Pygame is a framework for making games using
Python. Making games is fun, and it’s a great way
to expand your programming skills and knowledge.
Pygame takes care of many of the lower-level tasks in
building games, which lets you focus on the aspects of
your game that make it interesting.

Installing Pygame
Installing Pygame with pip
$ python -m pip install --user pygame

Starting a game
The following code sets up an empty game window, and
starts an event loop and a loop that continually refreshes the
screen.

An empty game window
import sys
import pygame

class AlienInvasion:
 """Overall class to manage the game."""

 def __init__(self):
 pygame.init()
 self.clock = pygame.time.Clock()
 self.screen = pygame.display.set_mode(
 (1200, 800))
 pygame.display.set_caption(
 "Alien Invasion")

 def run_game(self):
 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

 pygame.display.flip()
 self.clock.tick(60)

if __name__ == '__main__':
 # Make a game instance, and run the game.
 ai = AlienInvasion()
 ai.run_game()

Starting a game (cont.)
Setting a custom window size
The display.set_mode() function accepts a tuple that defines the
screen size.

screen_dim = (1500, 1000)
self.screen = pygame.display.set_mode(
 screen_dim)

Setting a custom background color
Colors are defined as a tuple of red, green, and blue values. Each
value ranges from 0-255. The fill() method fills the screen with the
color you specify, and should be called before you add any other
elements to the screen.

def __init__(self):
 --snip--
 self.bg_color = (225, 225, 225)

def run_game(self):
 while True:
 for event in pygame.event.get():
 --snip--

 self.screen.fill(self.bg_color)
 pygame.display.flip()

Pygame rect objects
Many objects in a game can be treated as simple rectangles,
rather than their actual shape. This simplifies code without
noticeably affecting game play. Pygame has a rect object
that makes it easy to work with game objects.

Getting the screen rect object
We already have a screen object; we can easily access the rect
object associated with the screen.

self.screen_rect = self.screen.get_rect()

Finding the center of the screen
Rect objects have a center attribute which stores the center point.

screen_center = self.screen_rect.center

Useful rect attributes
Once you have a rect object, there are a number of attributes
that are useful when positioning objects and detecting relative
positions of objects. (You can find more attributes in the Pygame
documentation. The self variable has been left off for clarity.)

Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height

Tuples
screen_rect.center
screen_rect.size

Pygame rect objects (cont.)
Creating a rect object
You can create a rect object from scratch. For example a small rect
object that’s filled in can represent a bullet in a game. The Rect()
class takes the coordinates of the upper left corner, and the width
and height of the rect. The draw.rect() function takes a screen
object, a color, and a rect. This function fills the given rect with the
given color.

bullet_rect = pygame.Rect(100, 100, 3, 15)
color = (100, 100, 100)

pygame.draw.rect(screen, color, bullet_rect)

Working with images
Many objects in a game are images that are moved around
the screen. It’s easiest to use bitmap (.bmp) image files, but
you can also configure your system to work with jpg, png,
and gif files as well.

Loading an image
ship = pygame.image.load('images/ship.bmp')

Getting the rect object from an image
ship_rect = ship.get_rect()

Positioning an image
With rects, it’s easy to position an image wherever you want on
the screen, or in relation to another object. The following code
positions a ship at the bottom center of the screen, by matching the
midbottom of the ship with the midbottom of the screen.

ship_rect.midbottom = screen_rect.midbottom

Drawing an image to the screen
Once an image is loaded and positioned, you can draw it to the
screen with the blit() method. The blit() method acts on
the screen object, and takes the image object and image rect as
arguments.

Draw ship to screen.
screen.blit(ship, ship_rect)

Transforming an image
The transform module allows you to make changes to an image
such as rotation and scaling.

rotated_image = pygame.transform.rotate(
 ship.image, 45)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Working with images (cont.)
The blitme() method
Game objects such as ships are often written as classes. Then a
blitme() method is usually defined, which draws the object to the
screen.

def blitme(self):
 """Draw ship at current location."""
 self.screen.blit(self.image, self.rect)

Responding to keyboard input
Pygame watches for events such as key presses and mouse
actions. You can detect any event you care about in the
event loop, and respond with any action that’s appropriate
for your game.

Responding to key presses
Pygame’s main event loop registers a KEYDOWN event any time a key
is pressed. When this happens, you can check for specific keys.

for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_RIGHT:
 ship_rect.x += 1
 elif event.key == pygame.K_LEFT:
 ship_rect.x -= 1
 elif event.key == pygame.K_SPACE:
 ship.fire_bullet()
 elif event.key == pygame.K_q:
 sys.exit()

Responding to released keys
When the user releases a key, a KEYUP event is triggered.

for event in pygame.event.get():
 if event.type == pygame.KEYUP:
 if event.key == pygame.K_RIGHT:
 ship.moving_right = False

The game is an object
In the overall structure shown here (under Starting a Game),
the entire game is written as a class. This makes it possible
to write programs that play the game automatically, and
it also means you can build an arcade with a collection of
games.

Pygame documentation
The Pygame documentation is really helpful when building
your own games. The home page for the Pygame project is
at pygame.org/, and the home page for the documentation is
at pygame.org/docs/.
 The most useful part of the documentation are the
pages about specific parts of Pygame, such as the Rect()
class and the sprite module. You can find a list of these
elements at the top of the help pages.

Responding to mouse events
Pygame’s event loop registers an event any time the mouse
moves, or a mouse button is pressed or released.

Responding to the mouse button
for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 ship.fire_bullet()

Finding the mouse position
The mouse position is returned as a tuple.

mouse_pos = pygame.mouse.get_pos()

Clicking a button
You might want to know if the cursor is over an object such as a
button. The rect.collidepoint() method returns True when a
point overlaps a rect object.

if button_rect.collidepoint(mouse_pos):
 start_game()

Hiding the mouse
pygame.mouse.set_visible(False)

Pygame groups
Pygame has a Group class which makes working with a
group of similar objects easier. A group is like a list, with
some extra functionality that’s helpful when building games.

Making and filling a group
An object that will be placed in a group must inherit from Sprite.

from pygame.sprite import Sprite, Group

class Bullet(Sprite):
 ...
 def draw_bullet(self):
 ...
 def update(self):
 ...

bullets = Group()

new_bullet = Bullet()
bullets.add(new_bullet)

Looping through the items in a group
The sprites() method returns all the members of a group.

for bullet in bullets.sprites():
 bullet.draw_bullet()

Calling update() on a group
Calling update() on a group automatically calls update() on each
member of the group.

bullets.update()

Pygame groups (cont.)
Removing an item from a group
It’s important to delete elements that will never appear again in the
game, so you don’t waste memory and resources.

bullets.remove(bullet)

Detecting collisions
You can detect when a single object collides with any
member of a group. You can also detect when any member
of one group collides with a member of another group.

Collisions between a single object and a group
The spritecollideany() function takes an object and a group,
and returns True if the object overlaps with any member of the
group.

if pygame.sprite.spritecollideany(ship, aliens):
 ships_left -= 1

Collisions between two groups
The sprite.groupcollide() function takes two groups, and two
booleans. The function returns a dictionary containing information
about the members that have collided. The booleans tell Pygame
whether to delete the members of either group that have collided.

collisions = pygame.sprite.groupcollide(
 bullets, aliens, True, True)

score += len(collisions) * alien_point_value

Rendering text
You can use text for a variety of purposes in a game. For
example you can share information with players, and you
can display a score.

Displaying a message
The following code defines a message, then a color for the text
and the background color for the message. A font is defined using
the default system font, with a font size of 48. The font.render()
function is used to create an image of the message, and we get the
rect object associated with the image. We then center the image on
the screen and display it.

msg = "Play again?"
msg_color = (100, 100, 100)
bg_color = (230, 230, 230)

f = pygame.font.SysFont(None, 48)
msg_image = f.render(msg, True, msg_color,
 bg_color)
msg_image_rect = msg_image.get_rect()
msg_image_rect.center = screen_rect.center
screen.blit(msg_image, msg_image_rect)

Weekly posts about all things Python
mostlypython.substack.com

