Beginner's Python

Cheat Sheet - Plotly

What is Plotly?

Data visualization involves exploring data through
visual representations. Plotly helps you make visually
appealing representations of the data you’re working
with. Plotly is particularly well suited for visualizations
that will be presented online, because it supports
interactive elements.

Plotly express lets you see a basic version of your
plot with just a few lines of code. Once you know the
plot works for your data, you can refine the style of
your plot.

Installing Plotly
Plotly Express requires the pandas library.

Installing Plotly with pip

$ python -m pip install --user plotly
$ python -m pip install --user pandas

Line graphs, scatter plots, and bar graphs
To make a plot with Plotly Express, you specify the data and

then create a fig object. The call to fig.show() opens the
plot in a new browser tab. You have a plot in just two lines of
code!

Making a line graph

Plotly generates JavaScript code to render the plot file. If you're
curious to see the code, open your browser's inspector tool when
the plot opens.

import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.
fig = px.line(x=x_values, y=squares)
fig.show()

Making a scatter plot

To make a scatter plot, change 1ine() to scatter(). This is the
point of Plotly Express; you can easily see your data in a variety of
ways before committing to a more specific styling options.

fig = px.scatter(x=x_values, y=squares)

Line graphs, scatter plots, and bar graphs

(cont.)
Making a bar graph

fig = px.bar(x=x_values, y=squares)

Initial customizations
The functions that generate plots also accept parameters

that specify titles, labels, and other formatting directives for
your visualizations.

Adding a title and axis labels
The title is a string. The labels dictionary lets you specify which
aspects of the plot will have custom labels.

import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.

title = "Square Numbers"

labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(x=x_values, y=squares,
title=title, labels=labels)

fig.show()

More customizations in the plotting call

Plotly Express was designed to give you as much control as
possible, using as little code as possible. Here's a small example of
how much can be customized within a single plotting call.

Most of these arguments can be single values, or sequences that

match the size of the overall dataset.

import plotly.express as px

x_values = list(range(11))
squares = [x**2 for x in x_values]

title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}
fig = px.scatter(

x=Xx_values,

y=squares,

title=title,

labels=1abels,

size=squares,

color=squares,

opacity=0.5,

width=1200,

height=800,
)

fig.show()

Further customizations
You can make a wide variety of further customizations to

a plot using the update methods. For example, update_
layout() gives you control of many formatting options.

Using update layout()
Here the update_layout () method is used to change the font
sizes, and change the tick mark spacing on the x-axis.

import plotly.express as px

x_values = list(range(11))
squares = [x**2 for x in x_values]

title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}
fig = px.scatter(

x=x_values,

y=squares,

fig.update_layout(
title_font_size=30,
xaxis_title font_size=24,
xaxis_dtick=1,
xaxis_tickfont_size=16,
yaxis_title_font_size=24,
yaxis_tickfont_size=16,

)

fig.show()

Plotly Express documentation

Plotly's documentation is extensive and well-organized.
There's a lot of it, though, so it can be hard to know where to
begin. Start with an overview of Plotly Express at plotly.com/
python/plotly-express. This page itself is helpful; make sure
you also click on the documentation for the kinds of plots

you use most often. These lead to pages full of discussions
and examples.

Also see the Python API reference for plotly at plotly.
com/python-api-reference. This is a reference page showing
all the different kinds of plots you can make with Plotly. If you
click on any of the links, you can see all the arguments that
can be included in plotting calls.

Python Crash Course LT

A Hands-on, Project-Based
Introduction to Programming

ehmatthes.github.io/pcc_3e

Using a predefined theme

A theme is a set of styles applied to a visualization in Plotly.
Themes are implemented with templates.

Using a theme

import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.

title = "Square Numbers"

labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(x=x_values, y=squares,
title=title, labels=1labels,
template='plotly_dark"')

fig.show()

Viewing all available themes

>>> import plotly.io as pio
>>> pio.templates
Templates configuration
Default template: 'plotly’
Available templates:
['ggplot2', 'seaborn',...,
'ygridoff', 'gridon', 'none']

Adding traces to a Plotly Express plot

In Plotly, a trace is a dataset that can be plotted on a

chart. You can add traces to existing Plotly Express plots.
Additional plots need to be specified using the graph_objects
module.

Using fig.add_trace()

import plotly.express as px
import plotly.graph_objects as go

days = list(range(1l, 10))
highs = [60, 63, 68, 70, 68, 70, 66, 62, 64]
lows = [51, 54, 53, 57, 54, 56, 52, 53, 49]

Start by plotting low temperaturs.
fig = px.line(x=days, y=lows)

Add a new trace for the high temperatures.

new_trace = go.Scatter(x=days, y=highs,
mode="lines")

fig.add_trace(new_trace)

fig.show()

Using Subplots

It's often useful to have multiple plots share the same axes.
This is done using the subplots module.

Adding subplots to a figure
To use the subplots module, make a figure to hold all the charts
that will be made. Then use the add_trace() method to add each
data series to the overall figure.

All individual plots need to be made using the graph_objects
module.

from plotly.subplots import make_subplots
import plotly.graph_objects as go

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

Make two subplots, sharing a y-axis.
fig = make_subplots(rows=1, cols=2,
shared_yaxes=True)

Start by plotting the square numbers.

squares_trace = go.Scatter(x=x_values,
y=squares)

fig.add_trace(squares_trace, row=1, col=1)

Add a new trace for the cubes.
cubes_trace = go.Scatter(x=x_values, y=cubes)
fig.add_trace(cubes_trace, row=1, col=2)

title = "Squares and Cubes”
fig.update_layout(title_text=title)

fig.show()

Further documentation

After exploring the Plotly Express documenation, look at
Styling Plotly Express Figures in Python, at plotly.com/
python/styling-plotly-express. This explains all the ways
you can style and format plots. After that, the Python Figure
Reference (plotly.com/python/reference/index) will be much
more useful. It shows you all the possible settings you can
change, with examples for each.

Make sure you read about "magic underscores” in Plotly,
at plotly.com/python/creating-and-updating-figures. They

take a little getting used to, but once you're familiar with
the syntax they make it much easier to specify exactly the
settings you want to modify.

If you're using subplots, read Subplots in Python at plotly.
com/python/subplots. Also look at Graph Objects in Python
at plotly.com/python/graph-objects, which are used to make
individual plots in a subplot.

Plotting global datasets

Plotly has a variety of mapping tools. For example, if you

have a set of points represented by latitude and longitude,
you can create a scatter plot of those points overlaying a
map.

The scattergeo chart type

Here's a map showing the location of three of the higher peaks in
North America. If you hover over each point, you'll see its location
and the name of the mountain.

import plotly.express as px

Points in (lat, lon) format.
peak_coords = [
(63.069, -151.0063),
(60.5671, -140.4055),
(46.8529, -121.7604),

]

Make matching lists of lats, 1lons,
and labels.

lats = [pc[@] for pc in peak_coords]
lons [pc[1] for pc in peak_coords]

peak_names = [
"Denali",
"Mt Logan",
"Mt Rainier"

]
elevations = [20_000, 18 000, 14 000]

Generate initial map.
title = "Selected High Peaks"
fig = px.scatter_geo(
lat=1lats,
lon=1lons,
title=title,
projection="natural earth",
text=peak_names,
size=elevations,
scope="north america",

)

Customize formatting options.

fig.update_layout(titlefont_size=24)

fig.update_traces(
textposition="middle right",
textfont_size=18,

)
fig.show()

Weekly posts about all things Python
mostlypython.substack.com

