Beginner's Python
Cheat Sheet -

Functions

What are functions?

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task.

Functions can take in the information they need,
and return the information they generate. Using
functions effectively makes your programs easier to
write, read, test, and maintain.

Defining a function

The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.

To call a function, give the name of the function followed
by a set of parentheses.

Making a function

def greet_user():
"""Display a simple greeting.
print(“"Hello!")

nun

greet_user()

Passing information to a function

Information that's passed to a function is called an argument;
information that's received by a function is called a

parameter. Arguments are included in parentheses after the
function's name, and parameters are listed in parentheses in
the function's definition.

Passing a simple argument

def greet_user(username):
"""Display a simple greeting.
print(f"Hello, {username}!")

nuon

greet_user('jesse')
greet_user('diana')
greet_user('brandon')

Positional and keyword arguments

The two main kinds of arguments are positional and keyword
arguments. When you use positional arguments Python
matches the first argument in the function call with the first
parameter in the function definition, and so forth.

With keyword arguments, you specify which parameter
each argument should be assigned to in the function
call. When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments

def describe_pet(animal, name):
"""Display information about a pet.
print(f"\nI have a {animal}.")
print(f"Its name is {name}.")

nun

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments

def describe_pet(animal, name):
"""Display information about a pet.
print(f"\nI have a {animal}.")
print(f"Its name is {name}.")

describe_pet(animal="hamster', name='harry')
describe_pet(name='willie', animal='dog')

Default values

You can provide a default value for a parameter. When
function calls omit this argument the default value will be

used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value

def describe_pet(name, animal='dog'):
"""Display information about a pet.
print(f"\nI have a {animal}.")
print(f"Its name is {name}.")

describe_pet('harry’,
describe_pet('willie")

"hamster')

Using None to make an argument optional

def describe_pet(animal, name=None):
"""Display information about a pet.
print(f"\nI have a {animal}.")
if name:
print(f"Its name is {name}.")

nun

describe_pet('hamster’,
describe_pet('snake")

"harry")

Return values
A function can return a value or a set of values. When a

function returns a value, the calling line should provide
a variable which the return value can be assigned to. A
function stops running when it reaches a return statement.

Returning a single value

def get_full name(first, last):
"""Return a neatly formatted full name.
full_name = f"{first} {last}"
return full name.title()

musician = get_full_name('jimi', 'hendrix')

print(musician)
Returning a dictionary

def build_person(first, last):
"""Return a dictionary of information
about a person.

nun

person = {'first': 'last': last}

return person

first,

musician = build_person('jimi', 'hendrix')

print(musician)
Returning a dictionary with optional values

def build_person(first, last, age=None):
"""Return a dictionary of information
about a person.
person = {'first':
if age:
person['age'] = age

first, 'last': last}

return person
musician = build_person('jimi', 'hendrix', 27)
print(musician)
musician = build_person('janis', 'joplin')
print(musician)

Visualizing functions
Try running some of these examples, and some of your own

programs that use functions, on pythontutor.com.

Python Crash Course LT

A Hands-on, Project-Based
Introduction to Programming

ehmatthes.github.io/pcc_3e

Passing a list to a function
You can pass a list as an argument to a function, and the

function can work with the values in the list. Any changes the

function makes to the list will affect the original list. You can
prevent a function from modifying a list by passing a copy of
the list as an argument.

Passing a list as an argument

def greet_users(names):
"""Print a simple greeting to everyone.
for name in names:
msg = f"Hello, {name}!"
print(msg)

nnn

usernames = ['hannah', 'ty', "'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The first list is emptied, and the second list is filled.

def print_models(unprinted, printed):
"""3d print a set of models.
while unprinted:
current_model = unprinted.pop()
print(f"Printing {current_model}")
printed.append(current_model)

nnn

Store some unprinted designs,

and print each of them.

unprinted = ['phone case', 'pendant', 'ring']
printed = []

print_models(unprinted, printed)

print(f"\nUnprinted: {unprinted}")
print(f"Printed: {printed}")

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
"""3d print a set of models.
while unprinted:
current_model = unprinted.pop()
print(f"Printing {current_model}")
printed.append(current_model)

Store some unprinted designs,

and print each of them.

original = ['phone case', 'pendant', 'ring']
printed = []

print_models(original[:], printed)
print(f"\nOriginal: {originall}")
print(f"Printed: {printed}")

Passing an arbitrary number of arguments

Sometimes you won't know how many arguments a function
will need to accept. Python allows you to collect an arbitrary
number of arguments into one parameter using the *
operator. A parameter that accepts an arbitrary number of

arguments must come last in the function definition. This
parameter is often named *args.

The ** operator allows a parameter to collect an arbitrary
number of keyword arguments. These are stored as a
dictionary with the parameter names as keys, and the
arguments as values. This is often named **kwargs.

Collecting an arbitrary number of arguments

def make_pizza(size, *toppings):
"""Make a pizza.
print(f"\nMaking a {size} pizza.")

[IRTRT]

print("Toppings:")
for topping in toppings:
print(f"- {topping}")

Make three pizzas with different toppings.

make_pizza('small', 'pepperoni')

make_pizza('large', 'bacon bits', 'pineapple')

make_pizza('medium', 'mushrooms', 'peppers’,
‘onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments

def build_profile(first, last, **user_info):
"""Build a dictionary for a user."""
user_info['first'] = first
user_info['last’'] = last

return user_info

Create two users with different kinds

of information.

user_© = build profile('albert', ‘'einstein',
location="princeton')

user_1 = build_profile('marie', 'curie',
location="paris', field='chemistry")

print(user_0)
print(user_1)

What's the best way to structure a function?
There are many ways to write and call a function. When

you're starting out, aim for something that simply works. As
you gain experience you'll develop an understanding of the

subtle advantages of different structures such as positional
and keyword arguments, and the various approaches to
importing functions. For now if your functions do what you
need them to, you're doing well.

Modules

You can store your functions in a separate file called a
module, and then import the functions you need into the

file containing your main program. This allows for cleaner
program files. Make sure your module is stored in the same
directory as your main program.

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):
"""Make a pizza.
print(f"\nMaking a {size} pizza.")
print("Toppings:")
for topping in toppings:
print(f"- {topping}")
Importing an entire module

File: making_pizzas.py Every function in the module is available in
the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')
pizza.make_pizza('small', 'bacon', 'pineapple')
Importing a specific function

Only the imported functions are available in the program file.
from pizza import make_pizza
make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')
Giving a module an alias

import pizza as p

p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple’)
Giving a function an alias

from pizza import make_pizza as mp

mp('medium', 'pepperoni')

mp('small’, 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It can
result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Weekly posts about all things Python
mostlypython.substack.com

