
Beginner's Python
Cheat Sheet -

Functions
What are functions?
Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task.
 Functions can take in the information they need,
and return the information they generate. Using
functions effectively makes your programs easier to
write, read, test, and maintain.

Defining a function
The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.
 To call a function, give the name of the function followed
by a set of parentheses.

Making a function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing information to a function
Information that's passed to a function is called an argument;
information that's received by a function is called a
parameter. Arguments are included in parentheses after the
function's name, and parameters are listed in parentheses in
the function's definition.

Passing a simple argument
def greet_user(username):
 """Display a simple greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')
greet_user('diana')
greet_user('brandon')

Positional and keyword arguments
The two main kinds of arguments are positional and keyword
arguments. When you use positional arguments Python
matches the first argument in the function call with the first
parameter in the function definition, and so forth.
 With keyword arguments, you specify which parameter
each argument should be assigned to in the function
call. When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments
def describe_pet(animal, name):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments
def describe_pet(animal, name):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet(animal='hamster', name='harry')
describe_pet(name='willie', animal='dog')

Default values
You can provide a default value for a parameter. When
function calls omit this argument the default value will be
used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value
def describe_pet(name, animal='dog'):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet('harry', 'hamster')
describe_pet('willie')

Using None to make an argument optional
def describe_pet(animal, name=None):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 if name:
 print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe_pet('snake')

Return values
A function can return a value or a set of values. When a
function returns a value, the calling line should provide
a variable which the return value can be assigned to. A
function stops running when it reaches a return statement.

Returning a single value
def get_full_name(first, last):
 """Return a neatly formatted full name."""
 full_name = f"{first} {last}"
 return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)

Returning a dictionary
def build_person(first, last):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 return person

musician = build_person('jimi', 'hendrix')
print(musician)

Returning a dictionary with optional values
def build_person(first, last, age=None):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 if age:
 person['age'] = age

 return person

musician = build_person('jimi', 'hendrix', 27)
print(musician)

musician = build_person('janis', 'joplin')
print(musician)

Visualizing functions
Try running some of these examples, and some of your own
programs that use functions, on pythontutor.com.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Passing a list to a function
You can pass a list as an argument to a function, and the
function can work with the values in the list. Any changes the
function makes to the list will affect the original list. You can
prevent a function from modifying a list by passing a copy of
the list as an argument.

Passing a list as an argument
def greet_users(names):
 """Print a simple greeting to everyone."""
 for name in names:
 msg = f"Hello, {name}!"
 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The first list is emptied, and the second list is filled.

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print(f"Printing {current_model}")
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
unprinted = ['phone case', 'pendant', 'ring']
printed = []
print_models(unprinted, printed)

print(f"\nUnprinted: {unprinted}")
print(f"Printed: {printed}")

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print(f"Printing {current_model}")
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
original = ['phone case', 'pendant', 'ring']
printed = []

print_models(original[:], printed)
print(f"\nOriginal: {original}")
print(f"Printed: {printed}")

Passing an arbitrary number of arguments
Sometimes you won't know how many arguments a function
will need to accept. Python allows you to collect an arbitrary
number of arguments into one parameter using the *
operator. A parameter that accepts an arbitrary number of
arguments must come last in the function definition. This
parameter is often named *args.
 The ** operator allows a parameter to collect an arbitrary
number of keyword arguments. These are stored as a
dictionary with the parameter names as keys, and the
arguments as values. This is often named **kwargs.

Collecting an arbitrary number of arguments
def make_pizza(size, *toppings):
 """Make a pizza."""
 print(f"\nMaking a {size} pizza.")

 print("Toppings:")
 for topping in toppings:
 print(f"- {topping}")

Make three pizzas with different toppings.
make_pizza('small', 'pepperoni')
make_pizza('large', 'bacon bits', 'pineapple')
make_pizza('medium', 'mushrooms', 'peppers',
 'onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments
def build_profile(first, last, **user_info):
 """Build a dictionary for a user."""
 user_info['first'] = first
 user_info['last'] = last

 return user_info

Create two users with different kinds
of information.
user_0 = build_profile('albert', 'einstein',
 location='princeton')

user_1 = build_profile('marie', 'curie',
 location='paris', field='chemistry')

print(user_0)
print(user_1)

What's the best way to structure a function?
There are many ways to write and call a function. When
you're starting out, aim for something that simply works. As
you gain experience you'll develop an understanding of the
subtle advantages of different structures such as positional
and keyword arguments, and the various approaches to
importing functions. For now if your functions do what you
need them to, you're doing well.

Modules
You can store your functions in a separate file called a
module, and then import the functions you need into the
file containing your main program. This allows for cleaner
program files. Make sure your module is stored in the same
directory as your main program.

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):
 """Make a pizza."""
 print(f"\nMaking a {size} pizza.")
 print("Toppings:")
 for topping in toppings:
 print(f"- {topping}")

Importing an entire module
File: making_pizzas.py Every function in the module is available in
the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')
pizza.make_pizza('small', 'bacon', 'pineapple')

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Giving a module an alias
import pizza as p

p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple')

Giving a function an alias
from pizza import make_pizza as mp

mp('medium', 'pepperoni')
mp('small', 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It can
result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Weekly posts about all things Python
mostlypython.substack.com

