
Beginner's Python
Cheat Sheet -

Files and Exceptions
Why work with files? Why use exceptions?
Your programs can read information in from files, and
they can write data to files. Reading from files allows
you to work with a wide variety of information; writing
to files allows users to pick up where they left off the
next time they run your program. You can write text to
files, and you can store Python structures such as lists
in data files as well.
 Exceptions are special objects that help your
programs respond to errors in appropriate ways.
For example if your program tries to open a file that
doesn’t exist, you can use exceptions to display an
informative error message instead of having the
program crash.

Reading from a file
To read from a file your program needs to specify the
path to the file, and then read the contents of the file. The
read_text() method returns a string containing the entire
contents of the file.

Reading an entire file at once
from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()

print(contents)

Working with a file's lines
It's often useful to work with individual lines from a file. Once the
contents of a file have been read, you can get the lines using the
splitlines() method.

from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()

lines = contents.splitlines()

for line in lines:
 print(line)

Writing to a file
The write_text() method can be used to write text to a
file. Be careful, this will write over the current file if it already
exists. To append to a file, read the contents first and then
rewrite the entire file.

Writing to a file
from pathlib import Path

path = Path("programming.txt")

msg = "I love programming!"
path.write_text(msg)

Writing multiple lines to a file
from pathlib import Path

path = Path("programming.txt")

msg = "I love programming!"
msg += "\nI love making games."
path.write_text(msg)

Appending to a file
from pathlib import Path

path = Path("programming.txt")
contents = path.read_text()

contents += "\nI love programming!"
contents += "\nI love making games."
path.write_text(contents)

Path objects
The pathlib module makes it easier to work with files in
Python. A Path object represents a file or directory, and lets
you carry out common directory and file operations.
 With a relative path, Python usually looks for a location
relative to the .py file that's running. Absolute paths are
relative to your system's root folder ("/").
 Windows uses backslashes when displaying file paths, but
you should use forward slashes in your Python code.

 Relative path
path = Path("text_files/alice.txt")

Absolute path

path = Path("/Users/eric/text_files/alice.txt")

Get just the filename from a path

>>> path = Path("text_files/alice.txt")
>>> path.name
'alice.txt'

Path objects (cont.)
Build a path
base_path = Path("/Users/eric/text_files")
file_path = base_path / "alice.txt"

Check if a file exists
>>> path = Path("text_files/alice.txt")
>>> path.exists()
True

Get filetype
>>> path.suffix
'.txt'

The try-except block
When you think an error may occur, you can write a try-
except block to handle the exception that might be raised.
The try block tells Python to try running some code, and the
except block tells Python what to do if the code results in a
particular kind of error.

Handling the ZeroDivisionError exception
try:
 print(5/0)
except ZeroDivisionError:
 print("You can't divide by zero!")

Handling the FileNotFoundError exception
from pathlib import Path

path = Path("siddhartha.txt")
try:
 contents = path.read_text()
except FileNotFoundError:
 msg = f"Can’t find file: {path.name}."
 print(msg)

Knowing which exception to handle
It can be hard to know what kind of exception to handle
when writing code. Try writing your code without a try block,
and make it generate an error. The traceback will tell you
what kind of exception your program needs to handle. It's a
good idea to skim through the exceptions listed at
docs.python.org/3/library/exceptions.html.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

The else block
The try block should only contain code that may cause
an error. Any code that depends on the try block running
successfully should be placed in the else block.

Using an else block
print("Enter two numbers. I'll divide them.")

x = input("First number: ")
y = input("Second number: ")

try:
 result = int(x) / int(y)
except ZeroDivisionError:
 print("You can't divide by zero!")
else:
 print(result)

Preventing crashes caused by user input
Without the except block in the following example, the program
would crash if the user tries to divide by zero. As written, it will
handle the error gracefully and keep running.

"""A simple calculator for division only."""

print("Enter two numbers. I'll divide them.")
print("Enter 'q' to quit.")

while True:
 x = input("\nFirst number: ")
 if x == 'q':
 break

 y = input("Second number: ")
 if y == 'q':
 break

 try:
 result = int(x) / int(y)
 except ZeroDivisionError:
 print("You can't divide by zero!")
 else:
 print(result)

Deciding which errors to report
Well-written, properly tested code is not very prone to
internal errors such as syntax or logical errors. But every
time your program depends on something external such as
user input or the existence of a file, there's a possibility of an
exception being raised.
 It's up to you how to communicate errors to your
users. Sometimes users need to know if a file is missing;
sometimes it's better to handle the error silently. A little
experience will help you know how much to report.

Failing silently
Sometimes you want your program to just continue running
when it encounters an error, without reporting the error to the
user. Using the pass statement in an except block allows
you to do this.

Using the pass statement in an except block
from pathlib import Path

f_names = ['alice.txt', 'siddhartha.txt',
 'moby_dick.txt', 'little_women.txt']

for f_name in f_names:
 # Report the length of each file found.
 path = Path(f_name)
 try:
 contents = path.read_text()
 except FileNotFoundError:
 pass
 else:
 lines = contents.splitlines()
 msg = f"{f_name} has {len(lines)}"
 msg += " lines."
 print(msg)

Avoid bare except blocks
Exception handling code should catch specific exceptions
that you expect to happen during your program's execution.
A bare except block will catch all exceptions, including
keyboard interrupts and system exits you might need when
forcing a program to close.
 If you want to use a try block and you're not sure
which exception to catch, use Exception. It will catch
most exceptions, but still allow you to interrupt programs
intentionally.

Don't use bare except blocks
try:
 # Do something
except:
 pass

Use Exception instead
try:
 # Do something
except Exception:
 pass

Printing the exception
try:
 # Do something
except Exception as e:
 print(e, type(e))

Storing data with json
The json module allows you to dump simple Python data
structures into a file, and load the data from that file the next
time the program runs. The JSON data format is not specific
to Python, so you can share this kind of data with people
who work in other languages as well.
 Knowing how to manage exceptions is important when
working with stored data. You'll usually want to make sure
the data you're trying to load exists before working with it.

Using json.dumps() to store data
from pathlib import Path
import json

numbers = [2, 3, 5, 7, 11, 13]

path = Path("numbers.json")
contents = json.dumps(numbers)
path.write_text(contents)

Using json.loads() to read data
from pathlib import Path
import json

path = Path("numbers.json")
contents = path.read_text()
numbers = json.loads(contents)

print(numbers)

Making sure the stored data exists
from pathlib import Path
import json

path = Path("numbers.json")

try:
 contents = path.read_text()
except FileNotFoundError:
 msg = f"Can't find file: {path}"
 print(msg)
else:
 numbers = json.loads(contents)
 print(numbers)

Practice with exceptions
Take a program you've already written that prompts for user
input, and add some error-handling code to the program.
Run your program with appropriate and inappropriate data,
and make sure it handles each situation correctly.

Weekly posts about all things Python
mostlypython.substack.com

