
Beginner's Python
Cheat Sheet -
Dictionaries

What are dictionaries?
Python's dictionaries allow you to connect pieces of
related information. Each piece of information in a
dictionary is stored as a key-value pair. When you
provide a key, Python returns the value associated
with that key. You can loop through all the key-value
pairs, all the keys, or all the values.

Defining a dictionary
Use curly braces to define a dictionary. Use colons to
connect keys and values, and use commas to separate
individual key-value pairs.

Making a dictionary
alien_0 = {'color': 'green', 'points': 5}

Accessing values
To access the value associated with an individual key give
the name of the dictionary and then place the key in a set
of square brackets. If the key you provided is not in the
dictionary, an error will occur.
 You can also use the get() method, which returns
None instead of an error if the key doesn't exist. You can
also specify a default value to use if the key is not in the
dictionary.

Getting the value associated with a key
alien_0 = {'color': 'green', 'points': 5}

print(alien_0['color'])
print(alien_0['points'])

Getting the value with get()
alien_0 = {'color': 'green'}

alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)
alien_speed = alien_0.get('speed')

print(alien_color)
print(alien_points)
print(alien_speed)

Adding new key-value pairs
You can store as many key-value pairs as you want in a
dictionary, until your computer runs out of memory. To add a
new key-value pair to an existing dictionary give the name of
the dictionary and the new key in square brackets, and set it
equal to the new value.
 This also allows you to start with an empty dictionary and
add key-value pairs as they become relevant.

Adding a key-value pair
alien_0 = {'color': 'green', 'points': 5}

alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5

Starting with an empty dictionary
alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5

Modifying values
You can modify the value associated with any key in a
dictionary. To do so give the name of the dictionary and the
key in square brackets, then provide the new value for that
key.

Modifying values in a dictionary
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien_0)

Removing key-value pairs
You can remove any key-value pair you want from a
dictionary. To do this use the del keyword and the dictionary
name, followed by the key in square brackets. This will
delete the key and its associated value.

Deleting a key-value pair
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)

Visualizing dictionaries
Try running some of these examples on pythontutor.com,
and then run one of your own programs that uses
dictionaries.

Looping through a dictionary
You can loop through a dictionary in three ways: you can
loop through all the key-value pairs, all the keys, or all the
values.
 Dictionaries keep track of the order in which key-value
pairs are added. If you want to process the information in a
different order, you can sort the keys in your loop, using the
sorted() function.

Looping through all key-value pairs
Store people's favorite languages.
fav_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }

Show each person's favorite language.
for name, language in fav_languages.items():
 print(f"{name}: {language}")

Looping through all the keys
Show everyone who's taken the survey.
for name in fav_languages.keys():
 print(name)

Looping through all the values
Show all the languages that have been chosen.
for language in fav_languages.values():
 print(language)

Looping through all the keys in reverse order
Show each person's favorite language,
in reverse order by the person's name.
for name in sorted(fav_languages.keys(),
 reverse=True):
 language = fav_languages[name]
 print(f"{name}: {language}")

Dictionary length
You can find the number of key-value pairs in a dictionary
using the len() function.

Finding a dictionary's length
num_responses = len(fav_languages)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Nesting - A list of dictionaries
It's sometimes useful to store a number of dictionaries in a
list; this is called nesting.

Storing dictionaries in a list
Start with an empty list.
users = []

Make a new user, and add them to the list.
new_user = {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 }
users.append(new_user)

Make another new user, and add them as well.
new_user = {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 }
users.append(new_user)

Show all information about each user.
print("User summary:")
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

You can also define a list of dictionaries directly,
without using append():
Define a list of users, where each user
is represented by a dictionary.
users = [
 {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 },
 {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 },
]

Show all information about each user.
print("User summary:")
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

Nesting - Lists in a dictionary
Storing a list inside a dictionary allows you to associate more
than one value with each key.

Storing lists in a dictionary
Store multiple languages for each person.
fav_languages = {
 'jen': ['python', 'ruby'],
 'sarah': ['c'],
 'edward': ['ruby', 'go'],
 'phil': ['python', 'haskell'],
}

Show all responses for each person.
for name, langs in fav_languages.items():
 print(f"{name}: ")
 for lang in langs:
 print(f"- {lang}")

Nesting - A dictionary of dictionaries
You can store a dictionary inside another dictionary. In this
case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary
users = {
 'aeinstein': {
 'first': 'albert',
 'last': 'einstein',
 'location': 'princeton',
 },

 'mcurie': {
 'first': 'marie',
 'last': 'curie',
 'location': 'paris',
 },
 }

for username, user_dict in users.items():
 full_name = f"{user_dict['first']} "
 full_name += user_dict['last']

 location = user_dict['location']

 print(f"\nUsername: {username}")
 print(f"\tFull name: {full_name.title()}")
 print(f"\tLocation: {location.title()}")

Levels of nesting
Nesting is extremely useful in certain situations. However,
be aware of making your code overly complex. If you're
nesting items much deeper than what you see here there
are probably simpler ways of managing your data, such as
using classes.

Dictionary Comprehensions
A comprehension is a compact way of generating a
dictionary, similar to a list comprehension. To make a
dictionary comprehension, define an expression for the
key-value pairs you want to make. Then write a for loop to
generate the values that will feed into this expression.
 The zip() function matches each item in one list to each
item in a second list. It can be used to make a dictionary
from two lists.

Using a loop to make a dictionary
squares = {}
for x in range(5):
 squares[x] = x**2

Using a dictionary comprehension
squares = {x:x**2 for x in range(5)}

Using zip() to make a dictionary
group_1 = ['kai', 'abe', 'ada', 'gus', 'zoe']
group_2 = ['jen', 'eva', 'dan', 'isa', 'meg']

pairings = {name:name_2
 for name, name_2 in zip(group_1, group_2)}

Generating a million dictionaries
You can use a loop to generate a large number of
dictionaries efficiently, if all the dictionaries start out with
similar data.

A million aliens
aliens = []

Make a million green aliens, worth 5 points
each. Have them all start in one row.
for alien_num in range(1_000_000):
 new_alien = {
 'color': 'green',
 'points': 5,
 'x': 20 * alien_num,
 'y': 0
 }

 aliens.append(new_alien)

Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)

Weekly posts about all things Python
mostlypython.substack.com

