
Beginner's Python
Cheat Sheet

Variables and Strings
Variables are used to assign labels to values. A string is a
series of characters, surrounded by single or double quotes.
Python's f-strings allow you to use variables inside strings to
build dynamic messages.

Hello world
print("Hello world!")

Hello world with a variable
msg = "Hello world!"
print(msg)

f-strings (using variables in strings)
first_name = 'albert'
last_name = 'einstein'
full_name = f"{first_name} {last_name}"
print(full_name)

Lists
A list stores a series of items in a particular order. You
access items using an index, or within a loop.

Make a list
bikes = ['trek', 'redline', 'giant']

Get the first item in a list
first_bike = bikes[0]

Get the last item in a list
last_bike = bikes[-1]

Looping through a list
for bike in bikes:
 print(bike)

Adding items to a list
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists
squares = []
for x in range(1, 11):
 squares.append(x**2)

Lists (cont.)
List comprehensions
squares = [x**2 for x in range(1, 11)]

Slicing a list
finishers = ['sam', 'bob', 'ada', 'bea']
first_two = finishers[:2]

Copying a list
copy_of_bikes = bikes[:]

Tuples
Tuples are similar to lists, but the items in a tuple can't be
modified.

Making a tuple
dimensions = (1920, 1080)
resolutions = ('720p', '1080p', '4K')

If statements
If statements are used to test for particular conditions and
respond appropriately.

Conditional tests
equal x == 42
not equal x != 42
greater than x > 42
 or equal to x >= 42
less than x < 42
 or equal to x <= 42

Conditional tests with lists
'trek' in bikes
'surly' not in bikes

Assigning boolean values
game_active = True
can_edit = False

A simple if test
if age >= 18:
 print("You can vote!")

If-elif-else statements
if age < 4:
 ticket_price = 0
elif age < 18:
 ticket_price = 10
elif age < 65:
 ticket_price = 40
else:
 ticket_price = 15

Dictionaries
Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair.

A simple dictionary
alien = {'color': 'green', 'points': 5}

Accessing a value
print(f"The alien's color is {alien['color']}.")

Adding a new key-value pair
alien['x_position'] = 0

Looping through all key-value pairs
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name, number in fav_numbers.items():
 print(f"{name} loves {number}.")

Looping through all keys
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name in fav_numbers.keys():
 print(f"{name} loves a number.")

Looping through all the values
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for number in fav_numbers.values():
 print(f"{number} is a favorite.")

User input
Your programs can prompt the user for input. All input is
stored as a string.

Prompting for a value
name = input("What's your name? ")
print(f"Hello, {name}!")

Prompting for numerical input
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

While loops
A while loop repeats a block of code as long as a certain
condition is true. While loops are especially useful when you
can't know ahead of time how many times a loop should run.

A simple while loop
current_value = 1
while current_value <= 5:
 print(current_value)
 current_value += 1

Letting the user choose when to quit
msg = ''
while msg != 'quit':
 msg = input("What's your message? ")
 print(msg)

Functions
Functions are named blocks of code, designed to do one
specific job. Information passed to a function is called an
argument, and information received by a function is called a
parameter.

A simple function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing an argument
def greet_user(username):
 """Display a personalized greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')

Default values for parameters
def make_pizza(topping='pineapple'):
 """Make a single-topping pizza."""
 print(f"Have a {topping} pizza!")

make_pizza()
make_pizza('mushroom')

Returning a value
def add_numbers(x, y):
 """Add two numbers and return the sum."""
 return x + y

sum = add_numbers(3, 5)
print(sum)

Classes
A class defines the behavior of an object and the kind of
information an object can store. The information in a class
is stored in attributes, and functions that belong to a class
are called methods. A child class inherits the attributes and
methods from its parent class.

Creating a dog class
class Dog:
 """Represent a dog."""

 def __init__(self, name):
 """Initialize dog object."""
 self.name = name

 def sit(self):
 """Simulate sitting."""
 print(f"{self.name} is sitting.")

my_dog = Dog('Peso')

print(f"{my_dog.name} is a great dog!")
my_dog.sit()

Inheritance
class SARDog(Dog):
 """Represent a search dog."""

 def __init__(self, name):
 """Initialize the sardog."""
 super().__init__(name)

 def search(self):
 """Simulate searching."""
 print(f"{self.name} is searching.")

my_dog = SARDog('Willie')

print(f"{my_dog.name} is a search dog.")
my_dog.sit()
my_dog.search()

Infinite Skills
If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's a
good habit to keep an "ideas" notebook that you can
refer to whenever you want to start a new project.
 If you haven't done so already, take a few minutes
and describe three projects you'd like to create. As
you're learning you can write small programs that
relate to these ideas, so you can get practice writing
code relevant to topics you're interested in.

Working with files
Your programs can read from files and write to files.
The pathlib library makes it easier to work with files and
directories. Once you have a path defined, you can work
with the read_text() and write_text() methods.

Reading the contents of a file
The read_text() method reads in the entire contents of a file. You
can then split the text into a list of individual lines, and then process
each line as you need to.

from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()
lines = contents.splitlines()

for line in lines:
 print(line)

Writing to a file
path = Path('journal.txt')

msg = "I love programming.")
path.write_text(msg)

Exceptions
Exceptions help you respond appropriately to errors that are
likely to occur. You place code that might cause an error in
the try block. Code that should run in response to an error
goes in the except block. Code that should run only if the try
block was successful goes in the else block.

Catching an exception
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
 num_tickets = int(num_tickets)
except ValueError:
 print("Please try again.")
else:
 print("Your tickets are printing.")

Zen of Python
Simple is better than complex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Lists

What are lists?
A list stores a series of items in a particular order. Lists
allow you to store sets of information in one place,
whether you have just a few items or millions of items.
Lists are one of Python's most powerful features
readily accessible to new programmers, and they tie
together many important concepts in programming.

Defining a list
Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make it clear that the variable represents more than
one item.

Making a list
users = ['val', 'bob', 'mia', 'ron', 'ned']

Accessing elements
Individual elements in a list are accessed according to their
position, called the index. The index of the first element is 0,
the index of the second element is 1, and so forth. Negative
indices refer to items at the end of the list. To get a particular
element, write the name of the list and then the index of the
element in square brackets.

Getting the first element
first_user = users[0]

Getting the second element
second_user = users[1]

Getting the last element
newest_user = users[-1]

Modifying individual items
Once you've defined a list, you can change the value of
individual elements in the list. You do this by referring to the
index of the item you want to modify.

Changing an element
users[0] = 'valerie'
users[1] = 'robert'
users[-2] = 'ronald'

Adding elements
You can add elements to the end of a list, or you can insert
them wherever you like in a list. This allows you to modify
existing lists, or start with an empty list and then add items to
it as the program develops.

Adding an element to the end of the list
users.append('amy')

Starting with an empty list
users = []
users.append('amy')
users.append('val')
users.append('bob')
users.append('mia')

Inserting elements at a particular position
users.insert(0, 'joe')
users.insert(3, 'bea')

Removing elements
You can remove elements by their position in a list, or by the
value of the item. If you remove an item by its value, Python
removes only the first item that has that value.

Deleting an element by its position
del users[-1]

Removing an item by its value
users.remove('mia')

Popping elements
If you want to work with an element that you're removing
from the list, you can "pop" the item. If you think of the list as
a stack of items, pop() takes an item off the top of the stack.
 By default pop() returns the last element in the list, but
you can also pop elements from any position in the list.

Pop the last item from a list
most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list
first_user = users.pop(0)
print(first_user)

List length
The len() function returns the number of items in a list.

Find the length of a list
num_users = len(users)
print(f"We have {num_users} users.")

Sorting a list
The sort() method changes the order of a list permanently.
The sorted() function returns a copy of the list, leaving the
original list unchanged.
 You can sort the items in a list in alphabetical order, or
reverse alphabetical order. You can also reverse the original
order of the list. Keep in mind that lowercase and uppercase
letters may affect the sort order.

Sorting a list permanently
users.sort()

Sorting a list permanently in reverse alphabetical order
users.sort(reverse=True)

Sorting a list temporarily
print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list
users.reverse()

Looping through a list
Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and assigns it to a temporary variable, which
you provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list
for user in users:
 print(user)

Printing a message for each item, and a separate
message afterwards
for user in users:
 print(f"\nWelcome, {user}!")
 print("We're so glad you joined!")

print("\nWelcome, we're glad to see you all!")

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

The range() function
You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000
for number in range(1001):
 print(number)

Printing the numbers 1 to 1000
for number in range(1, 1001):
 print(number)

Making a list of numbers from 1 to a million
numbers = list(range(1, 1_000_001))

Simple statistics
There are a number of simple statistical operations you can
run on a list containing numerical data.

Finding the minimum value in a list
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)

Finding the maximum value
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total_years = sum(ages)

Slicing a list
You can work with any subset of elements from a list. A
portion of a list is called a slice. To slice a list start with the
index of the first item you want, then add a colon and the
index after the last item you want. Leave off the first index
to start at the beginning of the list, and leave off the second
index to slice through the end of the list.

Getting the first three items
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first_three = finishers[:3]

Getting the middle three items
middle_three = finishers[1:4]

Getting the last three items
last_three = finishers[-3:]

Copying a list
To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

List comprehensions
You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation,
so Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use
the for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers
squares = []
for x in range(1, 11):
 square = x**2
 squares.append(square)

Using a comprehension to generate a list of square
numbers
squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []
for name in names:
 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

Styling your code
Readability counts

Follow common Python formatting conventions:
•  Use four spaces per indentation level.
•  Keep your lines to 79 characters or fewer.
•  Use single blank lines to group parts of your

program visually.

Tuples
A tuple is like a list, except you can't change the values
in a tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of a
program. Tuples are usually designated by parentheses.
 You can overwrite an entire tuple, but you can't change
the values of individual elements.

Defining a tuple
dimensions = (800, 600)

Looping through a tuple
for dimension in dimensions:
 print(dimension)

Overwriting a tuple
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)
print(dimensions)

Visualizing your code
When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. Python Tutor is a great tool for
seeing how Python keeps track of the information in a list.
Try running the following code on pythontutor.com, and then
run your own code.

Build a list and print the items in the list
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
 print(f"Hello {dog}!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
 print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -
Dictionaries

What are dictionaries?
Python's dictionaries allow you to connect pieces of
related information. Each piece of information in a
dictionary is stored as a key-value pair. When you
provide a key, Python returns the value associated
with that key. You can loop through all the key-value
pairs, all the keys, or all the values.

Defining a dictionary
Use curly braces to define a dictionary. Use colons to
connect keys and values, and use commas to separate
individual key-value pairs.

Making a dictionary
alien_0 = {'color': 'green', 'points': 5}

Accessing values
To access the value associated with an individual key give
the name of the dictionary and then place the key in a set
of square brackets. If the key you provided is not in the
dictionary, an error will occur.
 You can also use the get() method, which returns
None instead of an error if the key doesn't exist. You can
also specify a default value to use if the key is not in the
dictionary.

Getting the value associated with a key
alien_0 = {'color': 'green', 'points': 5}

print(alien_0['color'])
print(alien_0['points'])

Getting the value with get()
alien_0 = {'color': 'green'}

alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)
alien_speed = alien_0.get('speed')

print(alien_color)
print(alien_points)
print(alien_speed)

Adding new key-value pairs
You can store as many key-value pairs as you want in a
dictionary, until your computer runs out of memory. To add a
new key-value pair to an existing dictionary give the name of
the dictionary and the new key in square brackets, and set it
equal to the new value.
 This also allows you to start with an empty dictionary and
add key-value pairs as they become relevant.

Adding a key-value pair
alien_0 = {'color': 'green', 'points': 5}

alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5

Starting with an empty dictionary
alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5

Modifying values
You can modify the value associated with any key in a
dictionary. To do so give the name of the dictionary and the
key in square brackets, then provide the new value for that
key.

Modifying values in a dictionary
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien_0)

Removing key-value pairs
You can remove any key-value pair you want from a
dictionary. To do this use the del keyword and the dictionary
name, followed by the key in square brackets. This will
delete the key and its associated value.

Deleting a key-value pair
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)

Visualizing dictionaries
Try running some of these examples on pythontutor.com,
and then run one of your own programs that uses
dictionaries.

Looping through a dictionary
You can loop through a dictionary in three ways: you can
loop through all the key-value pairs, all the keys, or all the
values.
 Dictionaries keep track of the order in which key-value
pairs are added. If you want to process the information in a
different order, you can sort the keys in your loop, using the
sorted() function.

Looping through all key-value pairs
Store people's favorite languages.
fav_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }

Show each person's favorite language.
for name, language in fav_languages.items():
 print(f"{name}: {language}")

Looping through all the keys
Show everyone who's taken the survey.
for name in fav_languages.keys():
 print(name)

Looping through all the values
Show all the languages that have been chosen.
for language in fav_languages.values():
 print(language)

Looping through all the keys in reverse order
Show each person's favorite language,
in reverse order by the person's name.
for name in sorted(fav_languages.keys(),
 reverse=True):
 language = fav_languages[name]
 print(f"{name}: {language}")

Dictionary length
You can find the number of key-value pairs in a dictionary
using the len() function.

Finding a dictionary's length
num_responses = len(fav_languages)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Nesting - A list of dictionaries
It's sometimes useful to store a number of dictionaries in a
list; this is called nesting.

Storing dictionaries in a list
Start with an empty list.
users = []

Make a new user, and add them to the list.
new_user = {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 }
users.append(new_user)

Make another new user, and add them as well.
new_user = {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 }
users.append(new_user)

Show all information about each user.
print("User summary:")
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

You can also define a list of dictionaries directly,
without using append():
Define a list of users, where each user
is represented by a dictionary.
users = [
 {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 },
 {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 },
]

Show all information about each user.
print("User summary:")
for user_dict in users:
 for k, v in user_dict.items():
 print(f"{k}: {v}")
 print("\n")

Nesting - Lists in a dictionary
Storing a list inside a dictionary allows you to associate more
than one value with each key.

Storing lists in a dictionary
Store multiple languages for each person.
fav_languages = {
 'jen': ['python', 'ruby'],
 'sarah': ['c'],
 'edward': ['ruby', 'go'],
 'phil': ['python', 'haskell'],
}

Show all responses for each person.
for name, langs in fav_languages.items():
 print(f"{name}: ")
 for lang in langs:
 print(f"- {lang}")

Nesting - A dictionary of dictionaries
You can store a dictionary inside another dictionary. In this
case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary
users = {
 'aeinstein': {
 'first': 'albert',
 'last': 'einstein',
 'location': 'princeton',
 },

 'mcurie': {
 'first': 'marie',
 'last': 'curie',
 'location': 'paris',
 },
 }

for username, user_dict in users.items():
 full_name = f"{user_dict['first']} "
 full_name += user_dict['last']

 location = user_dict['location']

 print(f"\nUsername: {username}")
 print(f"\tFull name: {full_name.title()}")
 print(f"\tLocation: {location.title()}")

Levels of nesting
Nesting is extremely useful in certain situations. However,
be aware of making your code overly complex. If you're
nesting items much deeper than what you see here there
are probably simpler ways of managing your data, such as
using classes.

Dictionary Comprehensions
A comprehension is a compact way of generating a
dictionary, similar to a list comprehension. To make a
dictionary comprehension, define an expression for the
key-value pairs you want to make. Then write a for loop to
generate the values that will feed into this expression.
 The zip() function matches each item in one list to each
item in a second list. It can be used to make a dictionary
from two lists.

Using a loop to make a dictionary
squares = {}
for x in range(5):
 squares[x] = x**2

Using a dictionary comprehension
squares = {x:x**2 for x in range(5)}

Using zip() to make a dictionary
group_1 = ['kai', 'abe', 'ada', 'gus', 'zoe']
group_2 = ['jen', 'eva', 'dan', 'isa', 'meg']

pairings = {name:name_2
 for name, name_2 in zip(group_1, group_2)}

Generating a million dictionaries
You can use a loop to generate a large number of
dictionaries efficiently, if all the dictionaries start out with
similar data.

A million aliens
aliens = []

Make a million green aliens, worth 5 points
each. Have them all start in one row.
for alien_num in range(1_000_000):
 new_alien = {
 'color': 'green',
 'points': 5,
 'x': 20 * alien_num,
 'y': 0
 }

 aliens.append(new_alien)

Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -
If Statements

and While Loops
What are if statements? What are while
loops?
Python's if statements allow you to examine the
current state of a program and respond appropriately
to that state. You can write a simple if statement that
checks one condition, or you can create a complex
series of statements that identify the exact conditions
you're interested in.
 while loops run as long as certain conditions
remain true. You can use while loops to let your
programs run as long as your users want them to.

Conditional Tests
A conditional test is an expression that can be evaluated
as true or false. Python uses the values True and False
to decide whether the code in an if statement should be
executed.

Checking for equality
A single equal sign assigns a value to a variable. A double equal
sign checks whether two values are equal.
 If your conditional tests aren't doing what you expect them to,
make sure you're not accidentally using a single equal sign.

>>> car = 'bmw'
>>> car == 'bmw'
True
>>> car = 'audi'
>>> car == 'bmw'
False

Ignoring case when making a comparison
>>> car = 'Audi'
>>> car.lower() == 'audi'
True

Checking for inequality
>>> topping = 'mushrooms'
>>> topping != 'anchovies'
True

Numerical comparisons
Testing numerical values is similar to testing string values.

Testing equality and inequality
>>> age = 18
>>> age == 18
True
>>> age != 18
False

Comparison operators
>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Checking multiple conditions
You can check multiple conditions at the same time. The and
operator returns True if all the conditions listed are true. The
or operator returns True if any condition is true.

Using and to check multiple conditions
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 and age_1 >= 21
False
>>> age_1 = 23
>>> age_0 >= 21 and age_1 >= 21
True

Using or to check multiple conditions
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 or age_1 >= 21
True
>>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

Boolean values
A boolean value is either True or False. Variables with
boolean values are often used to keep track of certain
conditions within a program.

Simple boolean values
game_active = True
is_valid = True
can_edit = False

If statements
Several kinds of if statements exist. Your choice of which to
use depends on the number of conditions you need to test.
You can have as many elif blocks as you need, and the
else block is always optional.

Simple if statement
age = 19

if age >= 18:
 print("You're old enough to vote!")

If-else statements
age = 17

if age >= 18:
 print("You're old enough to vote!")
else:
 print("You can't vote yet.")

The if-elif-else chain
age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
else:
 price = 40

print(f"Your cost is ${price}.")

Conditional tests with lists
You can easily test whether a certain value is in a list. You
can also test whether a list is empty before trying to loop
through the list.

Testing if a value is in a list
>>> players = ['al', 'bea', 'cyn', 'dale']
>>> 'al' in players
True
>>> 'eric' in players
False

Testing if two values are in a list
>>> 'al' in players and 'cyn' in players

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Conditional tests with lists (cont.)
Testing if a value is not in a list
banned_users = ['ann', 'chad', 'dee']
user = 'erin'

if user not in banned_users:
 print("You can play!")

Checking if a list is empty
An empty list evaluates as False in an if statement.

players = []

if players:
 for player in players:
 print(f"Player: {player.title()}")
else:
 print("We have no players yet!")

Accepting input
You can allow your users to enter input using the input()
function. All input is initially stored as a string. If you want to
accept numerical input, you'll need to convert the input string
value to a numerical type.

Simple input
name = input("What's your name? ")
print(f"Hello, {name}.")

Accepting numerical input using int()
age = input("How old are you? ")
age = int(age)

if age >= 18:
 print("\nYou can vote!")
else:
 print("\nSorry, you can't vote yet.")

Accepting numerical input using float()
tip = input("How much do you want to tip? ")
tip = float(tip)
print(f"Tipped ${tip}.")

While loops
A while loop repeats a block of code as long as a condition
is true.

Counting to 5
current_number = 1

while current_number <= 5:
 print(current_number)
 current_number += 1

While loops (cont.)
Letting the user choose when to quit
prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
 message = input(prompt)

 if message != 'quit':
 print(message)

Using a flag
Flags are most useful in long-running programs where code from
other parts of the program might need to end the loop.

prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

active = True
while active:
 message = input(prompt)

 if message == 'quit':
 active = False
 else:
 print(message)

Using break to exit a loop
prompt = "\nWhat cities have you visited?"
prompt += "\nEnter 'quit' when you're done. "

while True:
 city = input(prompt)

 if city == 'quit':
 break
 else:
 print(f"I've been to {city}!")

Accepting input with Sublime Text
Sublime Text, and a number of other text editors can't run
programs that prompt the user for input. You can use these
editors to write programs that prompt for input, but you'll
need to run them from a terminal.

Breaking out of loops
You can use the break statement and the continue
statement with any of Python's loops. For example you can
use break to quit a for loop that's working through a list or a
dictionary. You can use continue to skip over certain items
when looping through a list or dictionary as well.

While loops (cont.)
Using continue in a loop
banned_users = ['eve', 'fred', 'gary', 'helen']

prompt = "\nAdd a player to your team."
prompt += "\nEnter 'quit' when you're done. "

players = []
while True:
 player = input(prompt)

 if player == 'quit':
 break
 elif player in banned_users:
 print(f"{player} is banned!")
 continue
 else:
 players.append(player)

print("\nYour team:")
for player in players:
 print(player)

Avoiding infinite loops
Every while loop needs a way to stop running so it won't
continue to run forever. If there's no way for the condition
to become false, the loop will never stop running. You can
usually press Ctrl-C to stop an infinite loop.

An infinite loop
while True:
 name = input("\nWho are you? ")
 print(f"Nice to meet you, {name}!")

Removing all instances of a value from a list
The remove() method removes a specific value from a
list, but it only removes the first instance of the value you
provide. You can use a while loop to remove all instances of
a particular value.

Removing all cats from a list of pets
pets = ['dog', 'cat', 'dog', 'fish', 'cat',
 'rabbit', 'cat']
print(pets)

while 'cat' in pets:
 pets.remove('cat')

print(pets)

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -

Functions
What are functions?
Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task.
 Functions can take in the information they need,
and return the information they generate. Using
functions effectively makes your programs easier to
write, read, test, and maintain.

Defining a function
The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.
 To call a function, give the name of the function followed
by a set of parentheses.

Making a function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing information to a function
Information that's passed to a function is called an argument;
information that's received by a function is called a
parameter. Arguments are included in parentheses after the
function's name, and parameters are listed in parentheses in
the function's definition.

Passing a simple argument
def greet_user(username):
 """Display a simple greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')
greet_user('diana')
greet_user('brandon')

Positional and keyword arguments
The two main kinds of arguments are positional and keyword
arguments. When you use positional arguments Python
matches the first argument in the function call with the first
parameter in the function definition, and so forth.
 With keyword arguments, you specify which parameter
each argument should be assigned to in the function
call. When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments
def describe_pet(animal, name):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments
def describe_pet(animal, name):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet(animal='hamster', name='harry')
describe_pet(name='willie', animal='dog')

Default values
You can provide a default value for a parameter. When
function calls omit this argument the default value will be
used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value
def describe_pet(name, animal='dog'):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 print(f"Its name is {name}.")

describe_pet('harry', 'hamster')
describe_pet('willie')

Using None to make an argument optional
def describe_pet(animal, name=None):
 """Display information about a pet."""
 print(f"\nI have a {animal}.")
 if name:
 print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe_pet('snake')

Return values
A function can return a value or a set of values. When a
function returns a value, the calling line should provide
a variable which the return value can be assigned to. A
function stops running when it reaches a return statement.

Returning a single value
def get_full_name(first, last):
 """Return a neatly formatted full name."""
 full_name = f"{first} {last}"
 return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)

Returning a dictionary
def build_person(first, last):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 return person

musician = build_person('jimi', 'hendrix')
print(musician)

Returning a dictionary with optional values
def build_person(first, last, age=None):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 if age:
 person['age'] = age

 return person

musician = build_person('jimi', 'hendrix', 27)
print(musician)

musician = build_person('janis', 'joplin')
print(musician)

Visualizing functions
Try running some of these examples, and some of your own
programs that use functions, on pythontutor.com.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Passing a list to a function
You can pass a list as an argument to a function, and the
function can work with the values in the list. Any changes the
function makes to the list will affect the original list. You can
prevent a function from modifying a list by passing a copy of
the list as an argument.

Passing a list as an argument
def greet_users(names):
 """Print a simple greeting to everyone."""
 for name in names:
 msg = f"Hello, {name}!"
 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The first list is emptied, and the second list is filled.

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print(f"Printing {current_model}")
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
unprinted = ['phone case', 'pendant', 'ring']
printed = []
print_models(unprinted, printed)

print(f"\nUnprinted: {unprinted}")
print(f"Printed: {printed}")

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print(f"Printing {current_model}")
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
original = ['phone case', 'pendant', 'ring']
printed = []

print_models(original[:], printed)
print(f"\nOriginal: {original}")
print(f"Printed: {printed}")

Passing an arbitrary number of arguments
Sometimes you won't know how many arguments a function
will need to accept. Python allows you to collect an arbitrary
number of arguments into one parameter using the *
operator. A parameter that accepts an arbitrary number of
arguments must come last in the function definition. This
parameter is often named *args.
 The ** operator allows a parameter to collect an arbitrary
number of keyword arguments. These are stored as a
dictionary with the parameter names as keys, and the
arguments as values. This is often named **kwargs.

Collecting an arbitrary number of arguments
def make_pizza(size, *toppings):
 """Make a pizza."""
 print(f"\nMaking a {size} pizza.")

 print("Toppings:")
 for topping in toppings:
 print(f"- {topping}")

Make three pizzas with different toppings.
make_pizza('small', 'pepperoni')
make_pizza('large', 'bacon bits', 'pineapple')
make_pizza('medium', 'mushrooms', 'peppers',
 'onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments
def build_profile(first, last, **user_info):
 """Build a dictionary for a user."""
 user_info['first'] = first
 user_info['last'] = last

 return user_info

Create two users with different kinds
of information.
user_0 = build_profile('albert', 'einstein',
 location='princeton')

user_1 = build_profile('marie', 'curie',
 location='paris', field='chemistry')

print(user_0)
print(user_1)

What's the best way to structure a function?
There are many ways to write and call a function. When
you're starting out, aim for something that simply works. As
you gain experience you'll develop an understanding of the
subtle advantages of different structures such as positional
and keyword arguments, and the various approaches to
importing functions. For now if your functions do what you
need them to, you're doing well.

Modules
You can store your functions in a separate file called a
module, and then import the functions you need into the
file containing your main program. This allows for cleaner
program files. Make sure your module is stored in the same
directory as your main program.

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):
 """Make a pizza."""
 print(f"\nMaking a {size} pizza.")
 print("Toppings:")
 for topping in toppings:
 print(f"- {topping}")

Importing an entire module
File: making_pizzas.py Every function in the module is available in
the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')
pizza.make_pizza('small', 'bacon', 'pineapple')

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Giving a module an alias
import pizza as p

p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple')

Giving a function an alias
from pizza import make_pizza as mp

mp('medium', 'pepperoni')
mp('small', 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It can
result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Classes
What are classes?
Classes are the foundation of object-oriented
programming. Classes represent real-world things
you want to model in your programs such as dogs,
cars, and robots. You use a class to make objects,
which are specific instances of dogs, cars, and robots.
A class defines the general behavior that a whole
category of objects can have, and the information that
can be associated with those objects.
 Classes can inherit from each other—you can write
a class that extends the functionality of an existing
class. This allows you to code efficiently for a wide
variety of situations. Even if you don't write many
of your own classes, you'll frequently find yourself
working with classes that others have written.

Creating and using a class
Consider how we might model a car. What information would
we associate with a car, and what behavior would it have?
The information is assigned to variables called attributes,
and the behavior is represented by functions. Functions that
are part of a class are called methods.

The Car class
class Car:
 """A simple attempt to model a car."""

 def __init__(self, make, model, year):
 """Initialize car attributes."""
 self.make = make
 self.model = model
 self.year = year

 # Fuel capacity and level in gallons.
 self.fuel_capacity = 15
 self.fuel_level = 0

 def fill_tank(self):
 """Fill gas tank to capacity."""
 self.fuel_level = self.fuel_capacity
 print("Fuel tank is full.")

 def drive(self):
 """Simulate driving."""
 print("The car is moving.")

Creating and using a class (cont.)
Creating an instance from a class
my_car = Car('audi', 'a4', 2021)

Accessing attribute values
print(my_car.make)
print(my_car.model)
print(my_car.year)

Calling methods
my_car.fill_tank()
my_car.drive()

Creating multiple instances
my_car = Car('audi', 'a4', 2024)
my_old_car = Car('subaru', 'outback', 2018)
my_truck = Car('toyota', 'tacoma', 2020)
my_old_truck = Car('ford', 'ranger', 1999)

Modifying attributes
You can modify an attribute's value directly, or you can
write methods that manage updating values more carefully.
Methods like these can help validate the kinds of changes
that are being made to an attribute.

Modifying an attribute directly
my_new_car = Car('audi', 'a4', 2024)
my_new_car.fuel_level = 5

Writing a method to update an attribute's value
def update_fuel_level(self, new_level):
 """Update the fuel level."""
 if new_level <= self.fuel_capacity:
 self.fuel_level = new_level
 else:
 print("The tank can't hold that much!")

Writing a method to increment an attribute's value
def add_fuel(self, amount):
 """Add fuel to the tank."""
 if (self.fuel_level + amount
 <= self.fuel_capacity):
 self.fuel_level += amount
 print("Added fuel.")
 else:
 print("The tank won't hold that much.")

Naming conventions
In Python class names are usually written in CamelCase
and object names are written in lowercase with underscores.
Modules that contain classes should be named in lowercase
with underscores.

Class inheritance
If the class you're writing is a specialized version of another
class, you can use inheritance. When one class inherits
from another, it automatically takes on all the attributes
and methods of the parent class. The child class is free
to introduce new attributes and methods, and override
attributes and methods of the parent class.
 To inherit from another class include the name of the
parent class in parentheses when defining the new class.

The __init__() method for a child class
class ElectricCar(Car):
 """A simple model of an electric car."""

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attributes specific to electric cars.
 # Battery capacity in kWh.
 self.battery_size = 40

 # Charge level in %.
 self.charge_level = 0

Adding new methods to the child class
class ElectricCar(Car):
 --snip--

 def charge(self):
 """Fully charge the vehicle."""
 self.charge_level = 100
 print("The vehicle is fully charged.")

Using child methods and parent methods
my_ecar = ElectricCar('nissan', 'leaf', 2024)

my_ecar.charge()
my_ecar.drive()

Finding your workflow
There are many ways to model real world objects and
situations in code, and sometimes that variety can feel
overwhelming. Pick an approach and try it; if your first
attempt doesn't work, try a different approach.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Class inheritance (cont.)
Overriding parent methods
class ElectricCar(Car):
 --snip--

 def fill_tank(self):
 """Display an error message."""
 print("This car has no fuel tank!")

Instances as attributes
A class can have objects as attributes. This allows classes to
work together to model more complex real-world things and
concepts.

A Battery class
class Battery:
 """A battery for an electric car."""

 def __init__(self, size=85):
 """Initialize battery attributes."""
 # Capacity in kWh, charge level in %.
 self.size = size
 self.charge_level = 0

 def get_range(self):
 """Return the battery's range."""
 if self.size == 40:
 return 150
 elif self.size == 65:
 return 225

Using an instance as an attribute
class ElectricCar(Car):
 --snip--

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attribute specific to electric cars.
 self.battery = Battery()

 def charge(self):
 """Fully charge the vehicle."""
 self.battery.charge_level = 100
 print("The vehicle is fully charged.")

Using the instance
my_ecar = ElectricCar('nissan', 'leaf', 2024)

my_ecar.charge()
print(my_ecar.battery.get_range())
my_ecar.drive()

Importing classes
Class files can get long as you add detailed information and
functionality. To help keep your program files uncluttered,
you can store your classes in modules and import the
classes you need into your main program.

Storing classes in a file
car.py

"""Represent gas and electric cars."""

class Car:
 """A simple attempt to model a car."""
 --snip—

class Battery:
 """A battery for an electric car."""
 --snip--

class ElectricCar(Car):
 """A simple model of an electric car."""
 --snip--

Importing individual classes from a module
my_cars.py

from car import Car, ElectricCar

my_beetle = Car('volkswagen', 'beetle', 2021)
my_beetle.fill_tank()
my_beetle.drive()

my_leaf = ElectricCar('nissan', 'leaf', 2024)
my_leaf.charge()
my_leaf.drive()

Importing an entire module
import car

my_beetle = car.Car(
 'volkswagen', 'beetle', 2021)
my_beetle.fill_tank()
my_beetle.drive()

my_leaf = car.ElectricCar('nissan', 'leaf',
 2024)
my_leaf.charge()
my_leaf.drive()

Importing all classes from a module
(Don’t do this, but recognize it when you see it.)

from car import *

my_beetle = Car('volkswagen', 'beetle', 2021)
my_leaf = ElectricCar('nissan', 'leaf', 2024)

Storing objects in a list
A list can hold as many items as you want, so you can make
a large number of objects from a class and store them in a
list.
 Here's an example showing how to make a fleet of rental
cars, and make sure all the cars are ready to drive.

A fleet of rental cars
from car import Car, ElectricCar

Make lists to hold a fleet of cars.
gas_fleet = []
electric_fleet = []

Make 250 gas cars and 500 electric cars.
for _ in range(250):
 car = Car('ford', 'escape', 2024)
 gas_fleet.append(car)
for _ in range(500):
 ecar = ElectricCar('nissan', 'leaf', 2024)
 electric_fleet.append(ecar)

Fill the gas cars, and charge electric cars.
for car in gas_fleet:
 car.fill_tank()
for ecar in electric_fleet:
 ecar.charge()

print(f"Gas cars: {len(gas_fleet)}")
print(f"Electric cars: {len(electric_fleet)}")

Understanding self
People often ask what the self variable represents. The
self variable is a reference to an object that's been created
from the class.
 The self variable provides a way to make other variables
and objects available everywhere in a class. The self
variable is automatically passed to each method that's
called through an object, which is why you see it listed first
in most method definitions. Any variable attached to self is
available everywhere in the class.

Understanding __init__()
The __init__() method is a function that's part of a class,
just like any other method. The only special thing about
__init__() is that it's called automatically every time
you make a new instance from a class. If you accidentally
misspell __init__(), the method won't be called and your
object may not be created correctly.

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -

Files and Exceptions
Why work with files? Why use exceptions?
Your programs can read information in from files, and
they can write data to files. Reading from files allows
you to work with a wide variety of information; writing
to files allows users to pick up where they left off the
next time they run your program. You can write text to
files, and you can store Python structures such as lists
in data files as well.
 Exceptions are special objects that help your
programs respond to errors in appropriate ways.
For example if your program tries to open a file that
doesn’t exist, you can use exceptions to display an
informative error message instead of having the
program crash.

Reading from a file
To read from a file your program needs to specify the
path to the file, and then read the contents of the file. The
read_text() method returns a string containing the entire
contents of the file.

Reading an entire file at once
from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()

print(contents)

Working with a file's lines
It's often useful to work with individual lines from a file. Once the
contents of a file have been read, you can get the lines using the
splitlines() method.

from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()

lines = contents.splitlines()

for line in lines:
 print(line)

Writing to a file
The write_text() method can be used to write text to a
file. Be careful, this will write over the current file if it already
exists. To append to a file, read the contents first and then
rewrite the entire file.

Writing to a file
from pathlib import Path

path = Path("programming.txt")

msg = "I love programming!"
path.write_text(msg)

Writing multiple lines to a file
from pathlib import Path

path = Path("programming.txt")

msg = "I love programming!"
msg += "\nI love making games."
path.write_text(msg)

Appending to a file
from pathlib import Path

path = Path("programming.txt")
contents = path.read_text()

contents += "\nI love programming!"
contents += "\nI love making games."
path.write_text(contents)

Path objects
The pathlib module makes it easier to work with files in
Python. A Path object represents a file or directory, and lets
you carry out common directory and file operations.
 With a relative path, Python usually looks for a location
relative to the .py file that's running. Absolute paths are
relative to your system's root folder ("/").
 Windows uses backslashes when displaying file paths, but
you should use forward slashes in your Python code.

 Relative path
path = Path("text_files/alice.txt")

Absolute path

path = Path("/Users/eric/text_files/alice.txt")

Get just the filename from a path

>>> path = Path("text_files/alice.txt")
>>> path.name
'alice.txt'

Path objects (cont.)
Build a path
base_path = Path("/Users/eric/text_files")
file_path = base_path / "alice.txt"

Check if a file exists
>>> path = Path("text_files/alice.txt")
>>> path.exists()
True

Get filetype
>>> path.suffix
'.txt'

The try-except block
When you think an error may occur, you can write a try-
except block to handle the exception that might be raised.
The try block tells Python to try running some code, and the
except block tells Python what to do if the code results in a
particular kind of error.

Handling the ZeroDivisionError exception
try:
 print(5/0)
except ZeroDivisionError:
 print("You can't divide by zero!")

Handling the FileNotFoundError exception
from pathlib import Path

path = Path("siddhartha.txt")
try:
 contents = path.read_text()
except FileNotFoundError:
 msg = f"Can’t find file: {path.name}."
 print(msg)

Knowing which exception to handle
It can be hard to know what kind of exception to handle
when writing code. Try writing your code without a try block,
and make it generate an error. The traceback will tell you
what kind of exception your program needs to handle. It's a
good idea to skim through the exceptions listed at
docs.python.org/3/library/exceptions.html.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

The else block
The try block should only contain code that may cause
an error. Any code that depends on the try block running
successfully should be placed in the else block.

Using an else block
print("Enter two numbers. I'll divide them.")

x = input("First number: ")
y = input("Second number: ")

try:
 result = int(x) / int(y)
except ZeroDivisionError:
 print("You can't divide by zero!")
else:
 print(result)

Preventing crashes caused by user input
Without the except block in the following example, the program
would crash if the user tries to divide by zero. As written, it will
handle the error gracefully and keep running.

"""A simple calculator for division only."""

print("Enter two numbers. I'll divide them.")
print("Enter 'q' to quit.")

while True:
 x = input("\nFirst number: ")
 if x == 'q':
 break

 y = input("Second number: ")
 if y == 'q':
 break

 try:
 result = int(x) / int(y)
 except ZeroDivisionError:
 print("You can't divide by zero!")
 else:
 print(result)

Deciding which errors to report
Well-written, properly tested code is not very prone to
internal errors such as syntax or logical errors. But every
time your program depends on something external such as
user input or the existence of a file, there's a possibility of an
exception being raised.
 It's up to you how to communicate errors to your
users. Sometimes users need to know if a file is missing;
sometimes it's better to handle the error silently. A little
experience will help you know how much to report.

Failing silently
Sometimes you want your program to just continue running
when it encounters an error, without reporting the error to the
user. Using the pass statement in an except block allows
you to do this.

Using the pass statement in an except block
from pathlib import Path

f_names = ['alice.txt', 'siddhartha.txt',
 'moby_dick.txt', 'little_women.txt']

for f_name in f_names:
 # Report the length of each file found.
 path = Path(f_name)
 try:
 contents = path.read_text()
 except FileNotFoundError:
 pass
 else:
 lines = contents.splitlines()
 msg = f"{f_name} has {len(lines)}"
 msg += " lines."
 print(msg)

Avoid bare except blocks
Exception handling code should catch specific exceptions
that you expect to happen during your program's execution.
A bare except block will catch all exceptions, including
keyboard interrupts and system exits you might need when
forcing a program to close.
 If you want to use a try block and you're not sure
which exception to catch, use Exception. It will catch
most exceptions, but still allow you to interrupt programs
intentionally.

Don't use bare except blocks
try:
 # Do something
except:
 pass

Use Exception instead
try:
 # Do something
except Exception:
 pass

Printing the exception
try:
 # Do something
except Exception as e:
 print(e, type(e))

Storing data with json
The json module allows you to dump simple Python data
structures into a file, and load the data from that file the next
time the program runs. The JSON data format is not specific
to Python, so you can share this kind of data with people
who work in other languages as well.
 Knowing how to manage exceptions is important when
working with stored data. You'll usually want to make sure
the data you're trying to load exists before working with it.

Using json.dumps() to store data
from pathlib import Path
import json

numbers = [2, 3, 5, 7, 11, 13]

path = Path("numbers.json")
contents = json.dumps(numbers)
path.write_text(contents)

Using json.loads() to read data
from pathlib import Path
import json

path = Path("numbers.json")
contents = path.read_text()
numbers = json.loads(contents)

print(numbers)

Making sure the stored data exists
from pathlib import Path
import json

path = Path("numbers.json")

try:
 contents = path.read_text()
except FileNotFoundError:
 msg = f"Can't find file: {path}"
 print(msg)
else:
 numbers = json.loads(contents)
 print(numbers)

Practice with exceptions
Take a program you've already written that prompts for user
input, and add some error-handling code to the program.
Run your program with appropriate and inappropriate data,
and make sure it handles each situation correctly.

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -

Testing Your Code
Why test your code?
When you write a function or a class, you can also
write tests for that code. Testing proves that your code
works as it's supposed to in the situations it's designed
to handle, and also when people use your programs in
unexpected ways. Writing tests gives you confidence
that your code will work correctly as more people
begin to use your programs. You can also add new
features to your programs and know whether or not
you've broken existing behavior by running your tests.
 A unit test verifies that one specific aspect of your
code works as it's supposed to. A test case is a
collection of unit tests which verify that your code's
behavior is correct in a wide variety of situations.
 The output in some sections has been trimmed for
space.

Testing a function: a passing test
The pytest library provides tools for testing your code. To
try it out, we’ll create a function that returns a full name. We’ll
use the function in a regular program, and then build a test
case for the function.

A function to test
Save this as full_names.py

def get_full_name(first, last):
 """Return a full name."""

 full_name = f"{first} {last}"
 return full_name.title()

Using the function
Save this as names.py

from full_names import get_full_name

janis = get_full_name('janis', 'joplin')
print(janis)

bob = get_full_name('bob', 'dylan')
print(bob)

Installing pytest
Installing pytest with pip
$ python -m pip install --user pytest

Testing a function (cont.)
Building a testcase with one unit test
To build a test case, import the function you want to test. Any
functions that begin with test_ will be run by pytest. Save this file
as test_full_names.py.

from full_names import get_full_name

def test_first_last():
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 assert full_name == 'Janis Joplin'

Running the test
Issuing the pytest command tells pytest to run any file beginning
with test_. pytest reports on each test in the test case.
 The dot after test_full_names.py represents a single passing test.
pytest informs us that it ran 1 test in about 0.01 seconds, and that
the test passed.

$ pytest
============= test session starts =============
platform darwin -- Python 3.11.0, pytest-7.1.2
rootdir: /.../testing_your_code
collected 1 item

test_full_names.py . [100%]
============== 1 passed in 0.01s ==============

Testing a function: A failing test
Failing tests are important; they tell you that a change in the
code has affected existing behavior. When a test fails, you
need to modify the code so the existing behavior still works.

Modifying the function
We’ll modify get_full_name() so it handles middle names, but
we’ll do it in a way that breaks existing behavior.

def get_full_name(first, middle, last):
 """Return a full name."""
 full_name = f"{first} {middle} {last}"
 return full_name.title()

Using the function
from full_names import get_full_name

john = get_full_name('john', 'lee', 'hooker')
print(john)

david = get_full_name('david', 'lee', 'roth')
print(david)

A failing test (cont.)
Running the test
When you change your code, it’s important to run your existing
tests. This will tell you whether the changes you made affect existing
behavior.

$ pytest
============= test session starts =============
test_full_names_failing.py F [100%]

================== FAILURES ===================
_______________ test_first_last _______________
> full_name = get_full_name('janis',
 'joplin')
E TypeError: get_full_name() missing 1
 required positional argument: 'last'

=========== short test summary info ===========
FAILED test_full_names.py::test_first_last...

============== 1 failed in 0.04s ==============

Fixing the code
When a test fails, the code needs to be modified until the test
passes again. Don’t make the mistake of rewriting your tests to fit
your new code, otherwise your code will break for anyone who's
using it the same way it's being used in the failing test.
 Here we can make the middle name optional:

def get_full_name(first, last, middle=''):
 """Return a full name."""

 if middle:
 full_name = f"{first} {middle} {last}"
 else:
 full_name = f"{first} {last}"

 return full_name.title()

Running the test
Now the test should pass again, which means our original
functionality is still intact.

$ pytest
============= test session starts =============
test_full_names.py . [100%]

============== 1 passed in 0.01s ==============

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Adding new tests
You can add as many unit tests to a test case as you need.
To write a new test, add a new function to your test file. If the
file grows too long, you can add as many files as you need.

Testing middle names
We’ve shown that get_full_name() works for first and last names.
Let’s test that it works for middle names as well.

from full_names import get_full_name

def test_first_last():
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 assert full_name == 'Janis Joplin'

def test_middle():
 """Test names like David Lee Roth."""
 full_name = get_full_name('david',
 'roth', 'lee')
 assert full_name == 'David Lee Roth'

Running the tests
The two dots after test_full_names.py represent two passing tests.

$ pytest
============= test session starts =============
collected 2 items
test_full_names.py .. [100%]

============== 2 passed in 0.01s ==============

A variety of assert statements
You can use assert statements in a variety of ways, to
check for the exact conditions you want to verify.

Verify that a==b, or a != b
assert a == b
assert a != b

Verify that x is True, or x is False
assert x
assert not x

Verify an item is in a list, or not in a list
assert my_item in my_list
assert my_item not in my_list

Running tests from one file
In a growing test suite, you can have multiple test files.
Sometimes you'll only want to run the tests from one file.
You can pass the name of a file, and pytest will only run the
tests in that file:

$ pytest test_names_function.py

Testing a class
Testing a class is similar to testing a function, since you’ll
mostly be testing its methods.

A class to test
Save as account.py

class Account():
 """Manage a bank account."""

 def __init__(self, balance=0):
 """Set the initial balance."""
 self.balance = balance

 def deposit(self, amount):
 """Add to the balance."""
 self.balance += amount

 def withdraw(self, amount):
 """Subtract from the balance."""
 self.balance -= amount

Building a testcase
For the first test, we’ll make sure we can start out with different initial
balances. Save this as test_accountant.py.

from account import Account

def test_initial_balance():
 """Default balance should be 0."""
 account = Account()
 assert account.balance == 0

def test_deposit():
 """Test a single deposit."""
 account = Account()
 account.deposit(100)
 assert account.balance == 100

Running the test
$ pytest
============= test session starts =============
collected 2 items
test_account.py .. [100%]

============== 2 passed in 0.01s ==============

When is it okay to modify tests?
In general you shouldn’t modify a test once it’s written. When
a test fails it usually means new code you’ve written has
broken existing functionality, and you need to modify the new
code until all existing tests pass.
 If your original requirements have changed, it may be
appropriate to modify some tests. This usually happens in
the early stages of a project when desired behavior is still
being sorted out, and no one is using your code yet.

Using fixtures
A fixture is a resource that's used in multiple tests. When the
name of a fixture function is used as an argument to a test
function, the return value of the fixture is passed to the test
function.
 When testing a class, you often have to make an instance
of the class. Fixtures let you work with just one instance.

Using fixtures to support multiple tests
The instance acc can be used in each new test.

import pytest
from account import Account

@pytest.fixture
def account():
 account = Account()
 return account

def test_initial_balance(account):
 """Default balance should be 0."""
 assert account.balance == 0

def test_deposit(account):
 """Test a single deposit."""
 account.deposit(100)
 assert account.balance == 100

def test_withdrawal(account):
 """Test a deposit followed by withdrawal."""
 account.deposit(1_000)
 account.withdraw(100)
 assert account.balance == 900

Running the tests
$ pytest
============= test session starts =============
collected 3 items
test_account.py ... [100%]

============== 3 passed in 0.01s ==============

pytest flags
pytest has some flags that can help you run your tests
efficiently, even as the number of tests in your project grows.

Stop at the first failing test
$ pytest -x

Only run tests that failed during the last test run
$ pytest --last-failed

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Pygame
What is Pygame?
Pygame is a framework for making games using
Python. Making games is fun, and it’s a great way
to expand your programming skills and knowledge.
Pygame takes care of many of the lower-level tasks in
building games, which lets you focus on the aspects of
your game that make it interesting.

Installing Pygame
Installing Pygame with pip
$ python -m pip install --user pygame

Starting a game
The following code sets up an empty game window, and
starts an event loop and a loop that continually refreshes the
screen.

An empty game window
import sys
import pygame

class AlienInvasion:
 """Overall class to manage the game."""

 def __init__(self):
 pygame.init()
 self.clock = pygame.time.Clock()
 self.screen = pygame.display.set_mode(
 (1200, 800))
 pygame.display.set_caption(
 "Alien Invasion")

 def run_game(self):
 while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()

 pygame.display.flip()
 self.clock.tick(60)

if __name__ == '__main__':
 # Make a game instance, and run the game.
 ai = AlienInvasion()
 ai.run_game()

Starting a game (cont.)
Setting a custom window size
The display.set_mode() function accepts a tuple that defines the
screen size.

screen_dim = (1500, 1000)
self.screen = pygame.display.set_mode(
 screen_dim)

Setting a custom background color
Colors are defined as a tuple of red, green, and blue values. Each
value ranges from 0-255. The fill() method fills the screen with the
color you specify, and should be called before you add any other
elements to the screen.

def __init__(self):
 --snip--
 self.bg_color = (225, 225, 225)

def run_game(self):
 while True:
 for event in pygame.event.get():
 --snip--

 self.screen.fill(self.bg_color)
 pygame.display.flip()

Pygame rect objects
Many objects in a game can be treated as simple rectangles,
rather than their actual shape. This simplifies code without
noticeably affecting game play. Pygame has a rect object
that makes it easy to work with game objects.

Getting the screen rect object
We already have a screen object; we can easily access the rect
object associated with the screen.

self.screen_rect = self.screen.get_rect()

Finding the center of the screen
Rect objects have a center attribute which stores the center point.

screen_center = self.screen_rect.center

Useful rect attributes
Once you have a rect object, there are a number of attributes
that are useful when positioning objects and detecting relative
positions of objects. (You can find more attributes in the Pygame
documentation. The self variable has been left off for clarity.)

Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height

Tuples
screen_rect.center
screen_rect.size

Pygame rect objects (cont.)
Creating a rect object
You can create a rect object from scratch. For example a small rect
object that’s filled in can represent a bullet in a game. The Rect()
class takes the coordinates of the upper left corner, and the width
and height of the rect. The draw.rect() function takes a screen
object, a color, and a rect. This function fills the given rect with the
given color.

bullet_rect = pygame.Rect(100, 100, 3, 15)
color = (100, 100, 100)

pygame.draw.rect(screen, color, bullet_rect)

Working with images
Many objects in a game are images that are moved around
the screen. It’s easiest to use bitmap (.bmp) image files, but
you can also configure your system to work with jpg, png,
and gif files as well.

Loading an image
ship = pygame.image.load('images/ship.bmp')

Getting the rect object from an image
ship_rect = ship.get_rect()

Positioning an image
With rects, it’s easy to position an image wherever you want on
the screen, or in relation to another object. The following code
positions a ship at the bottom center of the screen, by matching the
midbottom of the ship with the midbottom of the screen.

ship_rect.midbottom = screen_rect.midbottom

Drawing an image to the screen
Once an image is loaded and positioned, you can draw it to the
screen with the blit() method. The blit() method acts on
the screen object, and takes the image object and image rect as
arguments.

Draw ship to screen.
screen.blit(ship, ship_rect)

Transforming an image
The transform module allows you to make changes to an image
such as rotation and scaling.

rotated_image = pygame.transform.rotate(
 ship.image, 45)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Working with images (cont.)
The blitme() method
Game objects such as ships are often written as classes. Then a
blitme() method is usually defined, which draws the object to the
screen.

def blitme(self):
 """Draw ship at current location."""
 self.screen.blit(self.image, self.rect)

Responding to keyboard input
Pygame watches for events such as key presses and mouse
actions. You can detect any event you care about in the
event loop, and respond with any action that’s appropriate
for your game.

Responding to key presses
Pygame’s main event loop registers a KEYDOWN event any time a key
is pressed. When this happens, you can check for specific keys.

for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_RIGHT:
 ship_rect.x += 1
 elif event.key == pygame.K_LEFT:
 ship_rect.x -= 1
 elif event.key == pygame.K_SPACE:
 ship.fire_bullet()
 elif event.key == pygame.K_q:
 sys.exit()

Responding to released keys
When the user releases a key, a KEYUP event is triggered.

for event in pygame.event.get():
 if event.type == pygame.KEYUP:
 if event.key == pygame.K_RIGHT:
 ship.moving_right = False

The game is an object
In the overall structure shown here (under Starting a Game),
the entire game is written as a class. This makes it possible
to write programs that play the game automatically, and
it also means you can build an arcade with a collection of
games.

Pygame documentation
The Pygame documentation is really helpful when building
your own games. The home page for the Pygame project is
at pygame.org/, and the home page for the documentation is
at pygame.org/docs/.
 The most useful part of the documentation are the
pages about specific parts of Pygame, such as the Rect()
class and the sprite module. You can find a list of these
elements at the top of the help pages.

Responding to mouse events
Pygame’s event loop registers an event any time the mouse
moves, or a mouse button is pressed or released.

Responding to the mouse button
for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 ship.fire_bullet()

Finding the mouse position
The mouse position is returned as a tuple.

mouse_pos = pygame.mouse.get_pos()

Clicking a button
You might want to know if the cursor is over an object such as a
button. The rect.collidepoint() method returns True when a
point overlaps a rect object.

if button_rect.collidepoint(mouse_pos):
 start_game()

Hiding the mouse
pygame.mouse.set_visible(False)

Pygame groups
Pygame has a Group class which makes working with a
group of similar objects easier. A group is like a list, with
some extra functionality that’s helpful when building games.

Making and filling a group
An object that will be placed in a group must inherit from Sprite.

from pygame.sprite import Sprite, Group

class Bullet(Sprite):
 ...
 def draw_bullet(self):
 ...
 def update(self):
 ...

bullets = Group()

new_bullet = Bullet()
bullets.add(new_bullet)

Looping through the items in a group
The sprites() method returns all the members of a group.

for bullet in bullets.sprites():
 bullet.draw_bullet()

Calling update() on a group
Calling update() on a group automatically calls update() on each
member of the group.

bullets.update()

Pygame groups (cont.)
Removing an item from a group
It’s important to delete elements that will never appear again in the
game, so you don’t waste memory and resources.

bullets.remove(bullet)

Detecting collisions
You can detect when a single object collides with any
member of a group. You can also detect when any member
of one group collides with a member of another group.

Collisions between a single object and a group
The spritecollideany() function takes an object and a group,
and returns True if the object overlaps with any member of the
group.

if pygame.sprite.spritecollideany(ship, aliens):
 ships_left -= 1

Collisions between two groups
The sprite.groupcollide() function takes two groups, and two
booleans. The function returns a dictionary containing information
about the members that have collided. The booleans tell Pygame
whether to delete the members of either group that have collided.

collisions = pygame.sprite.groupcollide(
 bullets, aliens, True, True)

score += len(collisions) * alien_point_value

Rendering text
You can use text for a variety of purposes in a game. For
example you can share information with players, and you
can display a score.

Displaying a message
The following code defines a message, then a color for the text
and the background color for the message. A font is defined using
the default system font, with a font size of 48. The font.render()
function is used to create an image of the message, and we get the
rect object associated with the image. We then center the image on
the screen and display it.

msg = "Play again?"
msg_color = (100, 100, 100)
bg_color = (230, 230, 230)

f = pygame.font.SysFont(None, 48)
msg_image = f.render(msg, True, msg_color,
 bg_color)
msg_image_rect = msg_image.get_rect()
msg_image_rect.center = screen_rect.center
screen.blit(msg_image, msg_image_rect)

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -

Matplotlib
What is Matplotlib?
Data visualization involves exploring data through
visual representations. The Matplotlib library helps you
make visually appealing representations of the data
you’re working with. Matplotlib is extremely flexible;
these examples will help you get started with a few
simple visualizations.
 Many newer plotting libraries are wrappers around
Matplotlib, and understanding Matplotlib will help you
use those libraries more effectively as well.

Installing Matplotlib
Installing Matplotlib with pip
$ python -m pip install --user matplotlib

Line graphs and scatter plots
Making a line graph
The fig object represents the entire figure, or collection of plots; ax
represents a single plot in the figure. This convention is used even
when there's only one plot in the figure.

import matplotlib.pyplot as plt

x_values = [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]

fig, ax = plt.subplots()
ax.plot(x_values, squares)

plt.show()

Making a scatter plot
scatter() takes a list of x and y values; the s=10 argument
controls the size of each point.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)
plt.show()

Customizing plots
Plots can be customized in a wide variety of ways. Just
about any element of a plot can be modified.

Using built-in styles
Matplotlib comes with a number of built-in styles, which you can use
with one additional line of code. The style must be specified before
you create the figure.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

plt.show()

Seeing available styles
You can see all available styles on your system. This can be done in
a terminal session.

>>> import matplotlib.pyplot as plt
>>> plt.style.available
['Solarize_Light2', '_classic_test_patch', ...

Adding titles and labels, and scaling axes
import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

Set overall style to use, and plot data.
plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

Set chart title and label axes.
ax.set_title('Square Numbers', fontsize=24)
ax.set_xlabel('Value', fontsize=14)
ax.set_ylabel('Square of Value', fontsize=14)

Set scale of axes, and size of tick labels.
ax.axis([0, 1100, 0, 1_100_000])
ax.tick_params(axis='both', labelsize=14)

plt.show()

Using a colormap
A colormap varies the point colors from one shade to another, based
on a certain value for each point. The value used to determine
the color of each point is passed to the c argument, and the cmap
argument specifies which colormap to use.

ax.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, s=10)

Customizing plots (cont.)
Emphasizing points
You can plot as much data as you want on one plot. Here we replot
the first and last points larger to emphasize them.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

fig, ax = plt.subplots()
ax.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, s=10)

ax.scatter(x_values[0], squares[0], c='green',
 s=100)
ax.scatter(x_values[-1], squares[-1], c='red',
 s=100)

ax.set_title('Square Numbers', fontsize=24)
--snip--

Removing axes
You can customize or remove axes entirely. Here’s how to access
each axis, and hide it.

ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

Setting a custom figure size
You can make your plot as big or small as you want by using the
figsize argument. The dpi argument is optional; if you don’t know
your system’s resolution you can omit the argument and adjust the
figsize argument accordingly.

fig, ax = plt.subplots(figsize=(10, 6),
 dpi=128)

Saving a plot
The Matplotlib viewer has a save button, but you can also save
your visualizations programmatically by replacing plt.show() with
plt.savefig(). The bbox_inches argument reduces the amount of
whitespace around the figure.

plt.savefig('squares.png', bbox_inches='tight')

Online resources
The matplotlib gallery and documentation are at
matplotlib.org/. Be sure to visit the Examples, Tutorials, and
User guide sections.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Multiple plots
You can make as many plots as you want on one figure.
When you make multiple plots, you can emphasize
relationships in the data. For example you can fill the space
between two sets of data.

Plotting two sets of data
Here we use ax.scatter() twice to plot square numbers and
cubes on the same figure.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()

ax.scatter(x_values, squares, c='blue', s=10)
ax.scatter(x_values, cubes, c='red', s=10)

plt.show()

Filling the space between data sets
The fill_between() method fills the space between two data sets.
It takes a series of x-values and two series of y-values. It also takes
a facecolor to use for the fill, and an optional alpha argument that
controls the color’s transparency.

ax.fill_between(x_values, cubes, squares,
 facecolor='blue', alpha=0.25)

Working with dates and times
Many interesting data sets have a date or time as the x
value. Python’s datetime module helps you work with this
kind of data.

Generating the current date
The datetime.now() function returns a datetime object
representing the current date and time.

from datetime import datetime as dt

today = dt.now()
date_string = today.strftime('%m/%d/%Y')
print(date_string)

Generating a specific date
You can also generate a datetime object for any date and time you
want. The positional order of arguments is year, month, and day.
The hour, minute, second, and microsecond arguments are optional.

from datetime import datetime as dt

new_years = dt(2023, 1, 1)
fall_equinox = dt(year=2023, month=9, day=22)

Working with dates and times (cont.)
Datetime formatting arguments
The strptime() function generates a datetime object from a
string, and the strftime() method generates a formatted string
from a datetime object. The following codes let you work with dates
exactly as you need to.

%A Weekday name, such as Monday
%B Month name, such as January
%m Month, as a number (01 to 12)
%d Day of the month, as a number (01 to 31)
%Y Four-digit year, such as 2021
%y Two-digit year, such as 21
%H Hour, in 24-hour format (00 to 23)
%I Hour, in 12-hour format (01 to 12)
%p AM or PM
%M Minutes (00 to 59)
%S Seconds (00 to 61)

Converting a string to a datetime object
new_years = dt.strptime('1/1/2023', '%m/%d/%Y')

Converting a datetime object to a string
ny_string = new_years.strftime('%B %d, %Y')
print(ny_string)

Plotting high temperatures
The following code creates a list of dates and a corresponding list of
high temperatures. It then plots the high temperatures, with the date
labels displayed in a specific format.

from datetime import datetime as dt

import matplotlib.pyplot as plt
from matplotlib import dates as mdates

dates = [
 dt(2023, 6, 21), dt(2023, 6, 22),
 dt(2023, 6, 23), dt(2023, 6, 24),
]

highs = [56, 57, 57, 64]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')

ax.set_title("Daily High Temps", fontsize=24)
ax.set_ylabel("Temp (F)", fontsize=16)
x_axis = ax.get_xaxis()
x_axis.set_major_formatter(
 mdates.DateFormatter('%B %d %Y')
)
fig.autofmt_xdate()

plt.show()

Multiple plots in one figure
You can include as many individual graphs in one figure as
you want.

Sharing an x-axis
The following code plots a set of squares and a set of cubes on
two separate graphs that share a common x-axis. The plt.
subplots() function returns a figure object and a tuple of axes.
Each set of axes corresponds to a separate plot in the figure.
The first two arguments control the number of rows and columns
generated in the figure.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

fig, axs = plt.subplots(2, 1, sharex=True)

axs[0].scatter(x_values, squares)
axs[0].set_title('Squares')

axs[1].scatter(x_values, cubes, c='red')
axs[1].set_title('Cubes')

plt.show()

Sharing a y-axis
To share a y-axis, use the sharey=True argument.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, axs = plt.subplots(1, 2, sharey=True)

axs[0].scatter(x_values, squares)
axs[0].set_title('Squares')

axs[1].scatter(x_values, cubes, c='red')
axs[1].set_title('Cubes')

plt.show()

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Plotly

What is Plotly?
Data visualization involves exploring data through
visual representations. Plotly helps you make visually
appealing representations of the data you’re working
with. Plotly is particularly well suited for visualizations
that will be presented online, because it supports
interactive elements.
 Plotly express lets you see a basic version of your
plot with just a few lines of code. Once you know the
plot works for your data, you can refine the style of
your plot.

Installing Plotly
Plotly Express requires the pandas library.

Installing Plotly with pip
$ python -m pip install --user plotly
$ python -m pip install --user pandas

Line graphs, scatter plots, and bar graphs
To make a plot with Plotly Express, you specify the data and
then create a fig object. The call to fig.show() opens the
plot in a new browser tab. You have a plot in just two lines of
code!

Making a line graph
Plotly generates JavaScript code to render the plot file. If you're
curious to see the code, open your browser's inspector tool when
the plot opens.

import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.
fig = px.line(x=x_values, y=squares)
fig.show()

Making a scatter plot
To make a scatter plot, change line() to scatter(). This is the
point of Plotly Express; you can easily see your data in a variety of
ways before committing to a more specific styling options.

fig = px.scatter(x=x_values, y=squares)

Line graphs, scatter plots, and bar graphs
(cont.)
Making a bar graph
fig = px.bar(x=x_values, y=squares)

Initial customizations
The functions that generate plots also accept parameters
that specify titles, labels, and other formatting directives for
your visualizations.

Adding a title and axis labels
The title is a string. The labels dictionary lets you specify which
aspects of the plot will have custom labels.

import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.
title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(x=x_values, y=squares,
 title=title, labels=labels)
fig.show()

More customizations in the plotting call
Plotly Express was designed to give you as much control as
possible, using as little code as possible. Here's a small example of
how much can be customized within a single plotting call.
 Most of these arguments can be single values, or sequences that
match the size of the overall dataset.

import plotly.express as px

x_values = list(range(11))
squares = [x**2 for x in x_values]

title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(
 x=x_values,
 y=squares,
 title=title,
 labels=labels,
 size=squares,
 color=squares,
 opacity=0.5,
 width=1200,
 height=800,
)

fig.show()

Further customizations
You can make a wide variety of further customizations to
a plot using the update methods. For example, update_
layout() gives you control of many formatting options.

Using update_layout()
Here the update_layout() method is used to change the font
sizes, and change the tick mark spacing on the x-axis.

import plotly.express as px

x_values = list(range(11))
squares = [x**2 for x in x_values]

title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(
 x=x_values,
 y=squares,
 ...
)

fig.update_layout(
 title_font_size=30,
 xaxis_title_font_size=24,
 xaxis_dtick=1,
 xaxis_tickfont_size=16,
 yaxis_title_font_size=24,
 yaxis_tickfont_size=16,
)

fig.show()

Plotly Express documentation
Plotly's documentation is extensive and well-organized.
There's a lot of it, though, so it can be hard to know where to
begin. Start with an overview of Plotly Express at plotly.com/
python/plotly-express. This page itself is helpful; make sure
you also click on the documentation for the kinds of plots
you use most often. These lead to pages full of discussions
and examples.
 Also see the Python API reference for plotly at plotly.
com/python-api-reference. This is a reference page showing
all the different kinds of plots you can make with Plotly. If you
click on any of the links, you can see all the arguments that
can be included in plotting calls.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Using a predefined theme
A theme is a set of styles applied to a visualization in Plotly.
Themes are implemented with templates.

Using a theme
import plotly.express as px

Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

Visualize the data.
title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(x=x_values, y=squares,
 title=title, labels=labels,
 template='plotly_dark')
fig.show()

Viewing all available themes
>>> import plotly.io as pio
>>> pio.templates
Templates configuration

 Default template: 'plotly'
 Available templates:
 ['ggplot2', 'seaborn',...,
 'ygridoff', 'gridon', 'none']

Adding traces to a Plotly Express plot
In Plotly, a trace is a dataset that can be plotted on a
chart. You can add traces to existing Plotly Express plots.
Additional plots need to be specified using the graph_objects
module.

Using fig.add_trace()
import plotly.express as px
import plotly.graph_objects as go

days = list(range(1, 10))
highs = [60, 63, 68, 70, 68, 70, 66, 62, 64]
lows = [51, 54, 53, 57, 54, 56, 52, 53, 49]

Start by plotting low temperaturs.
fig = px.line(x=days, y=lows)

Add a new trace for the high temperatures.
new_trace = go.Scatter(x=days, y=highs,
 mode='lines')
fig.add_trace(new_trace)

fig.show()

Using Subplots
It's often useful to have multiple plots share the same axes.
This is done using the subplots module.

Adding subplots to a figure
To use the subplots module, make a figure to hold all the charts
that will be made. Then use the add_trace() method to add each
data series to the overall figure.
 All individual plots need to be made using the graph_objects
module.

from plotly.subplots import make_subplots
import plotly.graph_objects as go

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

Make two subplots, sharing a y-axis.
fig = make_subplots(rows=1, cols=2,
 shared_yaxes=True)

Start by plotting the square numbers.
squares_trace = go.Scatter(x=x_values,
 y=squares)
fig.add_trace(squares_trace, row=1, col=1)

Add a new trace for the cubes.
cubes_trace = go.Scatter(x=x_values, y=cubes)
fig.add_trace(cubes_trace, row=1, col=2)

title = "Squares and Cubes"
fig.update_layout(title_text=title)

fig.show()

Further documentation
After exploring the Plotly Express documenation, look at
Styling Plotly Express Figures in Python, at plotly.com/
python/styling-plotly-express. This explains all the ways
you can style and format plots. After that, the Python Figure
Reference (plotly.com/python/reference/index) will be much
more useful. It shows you all the possible settings you can
change, with examples for each.
 Make sure you read about "magic underscores" in Plotly,
at plotly.com/python/creating-and-updating-figures. They
take a little getting used to, but once you're familiar with
the syntax they make it much easier to specify exactly the
settings you want to modify.

 If you're using subplots, read Subplots in Python at plotly.
com/python/subplots. Also look at Graph Objects in Python
at plotly.com/python/graph-objects, which are used to make
individual plots in a subplot.

Plotting global datasets
Plotly has a variety of mapping tools. For example, if you
have a set of points represented by latitude and longitude,
you can create a scatter plot of those points overlaying a
map.

The scattergeo chart type
Here's a map showing the location of three of the higher peaks in
North America. If you hover over each point, you'll see its location
and the name of the mountain.

import plotly.express as px

Points in (lat, lon) format.
peak_coords = [
 (63.069, -151.0063),
 (60.5671, -140.4055),
 (46.8529, -121.7604),
]

Make matching lists of lats, lons,
and labels.
lats = [pc[0] for pc in peak_coords]
lons = [pc[1] for pc in peak_coords]

peak_names = [
 "Denali",
 "Mt Logan",
 "Mt Rainier"
]
elevations = [20_000, 18_000, 14_000]

Generate initial map.
title = "Selected High Peaks"
fig = px.scatter_geo(
 lat=lats,
 lon=lons,
 title=title,
 projection="natural earth",
 text=peak_names,
 size=elevations,
 scope="north america",
)

Customize formatting options.
fig.update_layout(titlefont_size=24)
fig.update_traces(
 textposition="middle right",
 textfont_size=18,
)

fig.show()

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Django
What is Django?
Django is a web framework that helps you build
interactive websites using Python. With Django you
define the kind of data your site will work with, and the
ways your users can work with that data.
 Django works well for tiny projects, and just as well
for sites with millions of users.

Installing Django
It’s best to install Django to a virtual environment, where
your project can be isolated from your other Python projects.
Most commands assume you’re working in an active virtual
environment.

Create a virtual environment
$ python –m venv ll_env

Activate the environment (macOS and Linux)
$ source ll_env/bin/activate

Activate the environment (Windows)
> ll_env\Scripts\activate

Install Django to the active environment
(ll_env)$ pip install Django

Creating a project
To start we’ll create a new project, create a database, and
start a development server.

Create a new project
Make sure to include the dot at the end of this command.

$ django-admin startproject ll_project .

Create a database
$ python manage.py migrate

View the project
After issuing this command, you can view the project at http://
localhost:8000/.

$ python manage.py runserver

Create a new app
A Django project is made up of one or more apps.

$ python manage.py startapp learning_logs

Working with models
The data in a Django project is structured as a set of models.
Each model is represented by a class.

Defining a model
To define the models for your app, modify the models.py file that
was created in your app’s folder. The __str__() method tells
Django how to represent data objects based on this model.

from django.db import models

class Topic(models.Model):
 """A topic the user is learning about."""

 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text

Activating a model
To use a model the app must be added to the list INSTALLED_APPS,
which is stored in the project’s settings.py file.

INSTALLED_APPS = [
 # My apps.
 'learning_logs',

 # Default Django apps.
 'django.contrib.admin',
]

Migrating the database
The database needs to be modified to store the kind of data that the
model represents. You'll need to run these commands every time
you create a new model, or modify an existing model.

$ python manage.py makemigrations learning_logs
$ python manage.py migrate

Creating a superuser
A superuser is a user account that has access to all aspects of the
project.

$ python manage.py createsuperuser

Registering a model
You can register your models with Django’s admin site, which makes
it easier to work with the data in your project. To do this, modify the
app’s admin.py file. View the admin site at http://localhost:8000/
admin/. You'll need to log in using a superuser account.

from django.contrib import admin

from .models import Topic

admin.site.register(Topic)

Building a simple home page
Users interact with a project through web pages, and a
project’s home page can start out as a simple page with no
data. A page usually needs a URL, a view, and a template.

Mapping a project's URLs
The project’s main urls.py file tells Django where to find the urls.py
files associated with each app in the project.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('learning_logs.urls')),
]

Mapping an app's URLs
An app’s urls.py file tells Django which view to use for each URL
in the app. You’ll need to make this file yourself, and save it in the
app’s folder.

from django.urls import path

from . import views

app_name = 'learning_logs'
urlpatterns = [
 # Home page.
 path('', views.index, name='index'),
]

Writing a simple view
A view takes information from a request and sends data to the
browser, often through a template. View functions are stored in an
app’s views.py file. This simple view function doesn’t pull in any
data, but it uses the template index.html to render the home page.

from django.shortcuts import render

def index(request):
 """The home page for Learning Log."""
 return render(request,
 'learning_logs/index.html')

Online resources
The documentation for Django is available at
docs.djangoproject.com/. The Django documentation is
thorough and user-friendly, so check it out!

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Building a simple home page (cont.)
Writing a simple template
A template sets up the structure for a page. It’s a mix of html and
template code, which is like Python but not as powerful. Most of the
logic for your project should be written in .py files, but some logic is
appropriate for templates.
 Make a folder called templates/ inside the project folder. Inside
the templates/ folder make another folder with the same name as
the app. This is where the template files should be saved. The home
page template will be saved as learning_logs/templates/learning_
logs/index.html.

<p>Learning Log</p>

<p>Learning Log helps you keep track of your
learning, for any topic you're learning
about.</p>

Template Inheritance
Many elements of a web page are repeated on every page
in the site, or every page in a section of the site. By writing
one parent template for the site, and one for each section,
you can easily modify the look and feel of your entire site.

The parent template
The parent template defines the elements common to a set of
pages, and defines blocks that will be filled by individual pages.

<p>

 Learning Log

</p>

{% block content %}{% endblock content %}

The child template
The child template uses the {% extends %} template tag to pull in
the structure of the parent template. It then defines the content for
any blocks defined in the parent template.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>
 Learning Log helps you keep track
 of your learning, for any topic you're
 learning about.
 </p>

{% endblock content %}

Template indentation
Python code is usually indented by four spaces. In templates
you’ll often see two spaces used for indentation, because
elements tend to be nested more deeply in templates.

Another model
A new model can use an existing model. The ForeignKey
attribute establishes a connection between instances of the
two related models. Make sure to migrate the database after
adding a new model to your app.

Defining a model with a foreign key
class Entry(models.Model):
 """Learning log entries for a topic."""
 topic = models.ForeignKey(Topic,
 on_delete=models.CASCADE)
 text = models.TextField()
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return f"{self.text[:50]}..."

Building a page with data
Most pages in a project need to present data that’s specific
to the current user.

URL parameters
A URL often needs to accept a parameter telling it what data to
access from the database. The URL pattern shown here looks for
the ID of a specific topic and assigns it to the parameter topic_id.

urlpatterns = [
 --snip--
 # Detail page for a single topic.
 path('topics/<int:topic_id>/', views.topic,
 name='topic'),
]

Using data in a view
The view uses a parameter from the URL to pull the correct data
from the database. In this example the view is sending a context
dictionary to the template, containing data that should be displayed
on the page. You'll need to import any model you're using.

def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topic.objects.get(id=topic_id)
 entries = topic.entry_set.order_by(
 '-date_added')
 context = {
 'topic': topic,
 'entries': entries,
 }
 return render(request,
 'learning_logs/topic.html', context)

Restarting the development server
If you make a change to your project and the change doesn’t
seem to have any effect, try restarting the server:
$ python manage.py runserver

Building a page with data (cont.)
Using data in a template
The data in the view function’s context dictionary is available within
the template. This data is accessed using template variables, which
are indicated by doubled curly braces.
 The vertical line after a template variable indicates a filter. In
this case a filter called date formats date objects, and the filter
linebreaks renders paragraphs properly on a web page.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>Topic: {{ topic }}</p>

 <p>Entries:</p>

 {% for entry in entries %}

 <p>
 {{ entry.date_added|date:'M d, Y H:i' }}
 </p>

 <p>
 {{ entry.text|linebreaks }}
 </p>

 {% empty %}
 There are no entries yet.
 {% endfor %}

{% endblock content %}

The Django shell
You can explore the data in your project from the command
line. This is helpful for developing queries and testing code
snippets.

Start a shell session
$ python manage.py shell

Access data from the project
>>> from learning_logs.models import Topic
>>> Topic.objects.all()
[<Topic: Chess>, <Topic: Rock Climbing>]
>>> topic = Topic.objects.get(id=1)
>>> topic.text
'Chess'
>>> topic.entry_set.all()
<QuerySet [<Entry: In the opening phase...>]>

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -
Django, Part 2

Users and forms
Most web applications need to let users make
accounts, so they can create and work with their own
data. Some of this data may be private, and some may
be public. Django’s forms allow users to enter and
modify their data.

User accounts
User accounts are handled by a dedicated app which we'll
call accounts. Users need to be able to register, log in, and
log out. Django automates much of this work for you.

Making an accounts app
After making the app, be sure to add 'accounts' to INSTALLED_
APPS in the project’s settings.py file.

$ python manage.py startapp accounts

Including URLs for the accounts app
Add a line to the project’s urls.py file so the accounts app’s URLs
are included in the project.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('accounts/', include('accounts.urls')),
 path('', include('learning_logs.urls')),
]

Using forms in Django
There are a number of ways to create forms and work
with them. You can use Django’s defaults, or completely
customize your forms. For a simple way to let users enter
data based on your models, use a ModelForm. This creates
a form that allows users to enter data that will populate the
fields on a model.
 The register view on the back of this sheet shows a
simple approach to form processing. If the view doesn’t
receive data from a form, it responds with a blank form. If
it receives POST data from a form, it validates the data and
then saves it to the database.

User accounts (cont.)
Defining the URLs
Users will need to be able to log in, log out, and register. Make a
new urls.py file in the users app folder.

from django.urls import path, include

from . import views

app_name = 'accounts'
urlpatterns = [
 # Include default auth urls.
 path('', include(
 'django.contrib.auth.urls')),

 # Registration page.
 path('register/', views.register,
 name='register'),
]

The login template
The login view is provided by default, but you need to provide your
own login template. The template shown here displays a simple
login form, and provides basic error messages. Make a templates/
folder in the accounts/ folder, and then make a registration/ folder in
the templates/ folder. Save this file as login.html. The path should be
accounts/templates/registration/login.html.
 The tag {% csrf_token %} helps prevent a common type of
attack with forms. The {{ form.as_div }} element displays the
default login form in an appropriate format.

{% extends "learning_logs/base.html" %}

{% block content %}

 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% endif %}

 <form action="{% url 'users:login'
 method="post" %}">

 {% csrf token %}
 {{ form.as_div }}
 <button name="submit">Log in</button>

 </form>

{% endblock content %}

The logout redirect setting in settings.py
This setting tells Django where to send users after they log out.

LOGOUT_REDIRECT_URL = 'learning_logs:index'

User accounts (cont.)
Showing the current login status
You can modify the base.html template to show whether the user
is currently logged in, and to provide a link to the login and logout
pages. Django makes a user object available to every template,
and this template takes advantage of this object.
 Testing for user.is_authenticated in a template allows you
to serve specific content to users depending on whether they have
logged in or not. The {{ user.username }} property allows you to
greet users who have logged in. Users who haven’t logged in see
links to register or log in.

<p>

 Learning Log

 {% if user.is_authenticated %}
 Hello, {{ user.username }}.

 Log out

 {% else %}

 Register
 -

 Log in

 {% endif %}

</p>

{% block content %}{% endblock content %}

The logout form
Django handles logout functionality, but you need to give users
a simple form to submit that logs them out. Make sure to add the
LOGOUT_REDIRECT_URL to settings.py.

{% if user.is_authenticated %}
 <form action="{% url 'accounts:logout' %}"
 method='post'>

 {% csrf_token %}
 <button name='submit'>Log out</button>

 </form>
{% endif %}

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

User accounts (cont.)
The register view
The register view needs to display a blank registration form when
the page is first requested, and then process completed registration
forms.
 A successful registration logs the user in and redirects to the
home page. An invalid form displays the registration page again,
with an appropriate error message.

from django.shortcuts import render, redirect
from django.contrib.auth import login
from django.contrib.auth.forms import \
 UserCreationForm

def register(request):
 """Register a new user."""

 if request.method != 'POST':
 # Display blank registration form.
 form = UserCreationForm()

 else:
 # Process completed form.
 form = UserCreationForm(
 data=request.POST)

 if form.is_valid():
 new_user = form.save()

 # Log in, redirect to home page.
 login(request, new_user)
 return redirect(
 'learning_logs:index')

 # Display a blank or invalid form.
 context = {'form': form}

 return render(request,
 'registration/register.html', context)

Styling your project
The django-bootstrap5 app allows you to use the
Bootstrap library to make your project look visually
appealing. The app provides tags that you can use in your
templates to style individual elements on a page. Learn
more at django-bootstrap5.readthedocs.io/.

Deploying your project
Platform.sh lets you push your project to a live server,
making it available to anyone with an internet connection.
Platform.sh offers a free service level, which lets you learn
the deployment process without any commitment.
 You’ll need to install a set of Platform.sh command line
tools, and use Git to track the state of your project. See
https://platform.sh/marketplace/django for more information.

User accounts (cont.)
The register template
The register.html template shown here displays the registration form
in a simple format.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <form action="{% url 'accounts:register'
 method='post' %}">

 {% csrf_token %}
 {{ form.as_div }}

 <button name='submit'>Register</button>

 </form>

{% endblock content %}

Connecting data to users
Users will create some data that belongs to them. Any model
that should be connected directly to a user needs a field
connecting instances of the model to a specific user.

Making a topic belong to a user
Only the highest-level data in a hierarchy needs to be directly
connected to a user. To do this import the User model, and add it as
a foreign key on the data model.
 After modifying the model you’ll need to migrate the database.
You’ll need to choose a user ID to connect each existing instance to.

from django.db import models
from django.contrib.auth.models import User

class Topic(models.Model):
 """A topic the user is learning about."""

 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 owner = models.ForeignKey(User,
 on_delete=models.CASCADE)

 def __str__(self):
 return self.text

Querying data for the current user
In a view, the request object has a user attribute. You can use this
attribute to query for the user’s data. The filter() method shown
here pulls the data that belongs to the current user.

topics = Topic.objects.filter(
 owner=request.user)

Connecting data to users (cont.)
Restricting access to logged-in users
Some pages are only relevant to registered users. The views for
these pages can be protected by the @login_required decorator.
Any view with this decorator will automatically redirect non-logged in
users to an appropriate page. Here’s an example views.py file.

from django.contrib.auth.decorators import \
 login_required
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""

Setting the redirect URL
The @login_required decorator sends unauthorized users to the
login page. Add the following line to your project’s settings.py file so
Django will know how to find your login page.

LOGIN_URL = 'accounts:login'

Preventing inadvertent access
Some pages serve data based on a parameter in the URL. You can
check that the current user owns the requested data, and return a
404 error if they don’t. Here’s an example view.

from django.http import Http404
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 if topic.owner != request.user:
 raise Http404
 --snip--

Using a form to edit data
If you provide some initial data, Django generates a form
with the user’s existing data. Users can then modify and
save their data.

Creating a form with initial data
The instance parameter allows you to specify initial data for a form.

form = EntryForm(instance=entry)

Modifying data before saving
The argument commit=False allows you to make changes before
writing data to the database.

new_topic = form.save(commit=False)
new_topic.owner = request.user
new_topic.save()

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet - Git

Version Control
Version control software allows you to take snapshots
of a project whenever it’s in a working state. If your
project stops working, you can roll back to the most
recent working version of the project.
 Version control is important because it frees you
to try new ideas with your code, without worrying that
you’ll break your overall project. A distributed version
control system like Git is also really useful in working
collaboratively with other developers.

Installing Git
You can find an installer for your system at git-scm.com/.
Before doing that, check if Git is already on your system:

$ git --version
git version 2.30.1 (Apple Git-130)

Configuring Git
You can configure Git so some of its features are easier to
use. The editor setting controls which editor Git will open
when it needs you to enter text.

See all global settings
$ git config --list

Set username
$ git config --global user.name "eric"

Set email
$ git config --global user.email
 "eric@example.com"

Set editor
$ git config --global core.editor "nano"

Ignoring files
To ignore files make a file called ".gitignore", with a leading
dot and no extension. Then list the directories and files you
want to ignore.

Ignore directories
__pycache__/
my_venv/

Ignoring files (cont.)
Ignore specific files
.DS_Store
secret_key.txt

Ignore files with specific extensions
*.pyc

Initializing a repository
All the files Git uses to manage the repository are located in
the hidden directory .git. Don't delete that directory, or you'll
lose your project's history.

Initialize a repository
$ git init
Initialized empty Git repository in
 my_project/.git/

Checking the status
It's important to check the status of your project often, even
before the first commit. This will tell you which files Git is
planning to track.

Check status
$ git status
On branch main
No commits yet
Untracked files:
 .gitignore
 hello.py
 ...

Adding files
You'll need to add the files you want Git to keep track of.

Add all files not in .gitignore
$ git add .

Add a single file
$ git add hello.py

Making a commit
When making a commit, the -am flag commits all files that
have been added, and records a commit message. (It's a
good idea to check the status before making each commit.)

Make a commit with a message
$ git commit -am "Started project, everything
 works."
2 files changed, 7 insertions(+)
create mode 100644 .gitignore
create mode 100644 hello.py

Checking the log
Git logs all the commits you've made. Checking the log is
helpful for understanding the history of your project.

Check log in default format
$ git log
commit dc2ebd6... (HEAD -> main)
Author: Eric Matthes <eric@example.com>
Date: Feb 27 11:27:07 2023 -0900
 Greets user.
commit bf55851...
...

Check log in simpler format
$ git log --oneline
dc2ebd6 (HEAD -> main) Greets uer.
bf55851 Started project, everything works.

Exploring history
You can explore a project's history by visiting specific
commit hashes, or by referencing the project's HEAD. HEAD
refers to the most recent commit of the current branch.

Visit a specific commit
$ git checkout b9aedbb

Return to most recent commit of main branch
$ git checkout main

Visit the previous commit
$ git checkout HEAD^

Visit an earlier commit
$ git checkout HEAD^^^

Visit the previous commit
$ git checkout HEAD~1

Vist an earlier commit
$ git checkout HEAD~3

Learning more
You can learn more about using Git with the command git
help. You can also go to Stack Overflow and search for git,
and then sort the questions by number of votes.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Branching
When the work you're about to do will involve multiple
commits, you can create a branch where you'll do this work.
The changes you make will be kept away from your main
branch until you choose to merge them. It's common to
delete a branch after merging back to the main branch.
 Branches can also be used to maintain independent
releases of a project.

Make a new branch and switch to it
$ git checkout -b new_branch_name
Switched to a new branch 'new_branch_name'

See all branches
$ git branch
main
* new_branch_name

Switch to a different branch
$ git checkout main
Switched to branch 'main'

Merge changes
$ git merge new_branch_name
Updating b9aedbb..5e5130a
Fast-forward
 hello.py | 5 +++++
 1 file changed, 5 insertions(+)

Delete a branch
$ git branch -D new_branch_name
Deleted branch new_branch_name
 (was 5e5130a).

Move last commit to new branch
$ git branch new_branch_name
$ git reset --hard HEAD~1
$ git checkout new_branch_name

Undoing recent changes
One of the main points of version control is to allow you to
go back to any working state of your project and start over
from there.

Get rid of all uncommited changes
$ git checkout .

Get rid of all changes since a specific commit
$ git reset --hard b9aedbb

Create new branch starting at a previous commit
$ git checkout -b branch_name b9aedbb

Stashing changes
If you want to save some changes without making a commit,
you can stash your changes. This is useful when you want to
revisit the most recent commit without making a new commit.
You can stash as many sets of changes as you need.

Stash changes since last commit
$ git stash
Saved working directory and index state
 WIP on main: f6f39a6...

See stashed changes
$ git stash list
stash@{0}: WIP on main: f6f39a6...
stash@{1}: WIP on main: f6f39a6...
...

Reapply changes from most recent stash
$ git stash pop

Reapply changes from a specific stash
$ git stash pop --index 1

Clear all stashed changes
$ git stash clear

Comparing commits
It's often helpful to compare changes across different states
of a project.

See all changes since last commit
$ git diff

See changes in one file since last commit
$ git diff hello.py

See changes since a specific commit
$ git diff HEAD~2
$ git diff HEAD^^
$ git diff fab2cdd

See changes between two commits
$ git diff fab2cdd 7c0a5d8

See changes in one file between two commits
$ git diff fab2cdd 7c0a5d8 hello.py

Good commit habits
Try to make a commit whenever your project is in a new
working state. Make sure you're writing concise commit
messages that focus on what changes have been
implemented. If you're starting work on a new feature or
bugfix, consider making a new branch.

Git & GitHub
GitHub is a platform for sharing code, and working
collaboratively on code. You can clone any public project on
GitHub. When you have an account, you can upload your
own projects, and make them public or private.

Clone an existing repository to your local system
$ git clone
 https://github.com/ehmatthes/pcc_3e.git/
Cloning into 'pcc_3e'...
...
Resolving deltas: 100% (1503/1503), done.

Push a local project to a GitHub repository
You'll need to make an empty repository on GitHub first.

$ git remote add origin
 https://github.com/username/hello_repo.git
$ git push -u origin main
Enumerating objects: 10, done.
...
To https://github.com/username/hello_repo.git
 * [new branch] main -> main
Branch 'main' set up to track remote branch
 'main' from 'origin'.

Push recent changes to your GitHub repository
$ git push origin branch_name

Using pull requests
When you want to pull a set of changes from one branch
into the main branch of a project on GitHub, you can make
a pull request. To practice making pull requests on your own
repositories, make a new branch for your work. When you're
finished the work, push the branch to your repository. Then
go to the "Pull requests" tab on GitHub, and click "Compare
& pull request" on the branch you wish to merge. When
you're ready, click "Merge pull request".
 You can then pull these changes back into your local main
branch with git pull origin main. This is an alternative
to merging changes to your main branch locally, and then
pushing the main branch to GitHub.

Practicing with Git
Git can be used in simple ways as a solo developer, and
complex ways as part of a large collaborative team. You can
gain valuable experience by making a simple throwaway
project and trying all of these steps with that project. Make
sure your project has multiple files and nested folders to get
a clear sense of how Git works.

Weekly posts about all things Python
mostlypython.substack.com

